Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oecologia ; 174(3): 679-87, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24221082

ABSTRACT

It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190-260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83-84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different "costs of reproduction" in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting.


Subject(s)
Fagus/physiology , Nitrogen/metabolism , Seeds/physiology , Fruit , Japan , Plant Leaves/metabolism , Plant Roots/metabolism , Reproduction , Seasons , Soil
2.
Tree Physiol ; 28(9): 1421-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18595854

ABSTRACT

During the summers (July and August) of 2002-2005, we measured interannual variation in maximum carboxylation rate (V(cmax)) within a Fagus crenata Blume crown in relation to climate variables such as air temperature, daytime vapor pressure deficit (VPD) and daily photosynthetic photon flux, leaf nitrogen per unit area (N(a)) and leaf mass per unit area (LMA). Climatic conditions in the summers of 2002-2004 differed markedly, with warm and dry atmospheric conditions in 2002, cool, humid and cloudy conditions in 2003, and warm clear conditions in 2004. Conditions in summer 2005 were intermediate between those of summers 2002 and 2003, and similar to recent (8-year) means. In July, marked interannual variation in V(cmax) was mainly observed in leaves in the high-light environment (relative photon flux > 50%) within the crown. At the crown top, V(cmax) was about twofold higher in 2002 than in 2003, and V(cmax) values in 2004 and 2005 were intermediate between those in 2002 and 2003. In August, although interannual variation in V(cmax) among the years 2003, 2004 and 2005 was less, marked variation between 2002 and the other study years was evident. Multiple regression analysis of V(cmax) against the climate variables revealed that VPD of the previous 10-30 days had a significant influence on variability in V(cmax). Neither N(a), LMA nor leaf CO(2) conductance from the stomata to the carboxylation site explained the variability in V(cmax). Our results indicate that the long-term climatic response of V(cmax) should be considered when estimating forest carbon gain across the year.


Subject(s)
Fagus/metabolism , Nitrogen/metabolism , Photosynthesis , Plant Leaves/metabolism , Weather , Climate , Fagus/anatomy & histology , Japan , Plant Leaves/anatomy & histology , Time Factors
3.
Tree Physiol ; 28(8): 1269-76, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18519258

ABSTRACT

In Fagus, full-mast seeding years are invariably followed by at least one non-mast year. Both flower and leaf primordia develop during the summer within the same winter buds. Flower bud initiation occurs when the N content of developing seeds is increasing rapidly. We hypothesized that competition for nitrogen (N) between developing seeds and buds limits flower primordium formation in mast years and, hence, limits seed production in years following mast years. We tested this hypothesis in three Fagus crenata Blume forests at elevations of 550, 900 and 1500 m. Bud N concentration (N con), amount of N per bud (N bud) and dry mass per bud (DM) were compared between a mast year (2005) and the following non-mast year (2006), and between winter buds containing both leaf and flower primoridia (BF), which were formed during the non-mast year, and winter buds containing leaf primordia only (BL), which were formed in both mast and non-mast years. In addition, leaf numbers per shoot corresponding to the analyzed buds were counted, and the effect of masting on litter production was analyzed by quantifying the amounts of litter that fell in the years 2004 to 2007. The dry mass and N content of BF formed in 2006 by trees at both 550 and 1500 m were 2.1-3.4-fold higher than the corresponding amounts in BL, although the numbers of leaves per current-year shoot in 2007 that developed from the two bud types in the same individuals did not differ significantly. These results indicate that more N and carbohydrate are expended in producing BF than in producing BL. The amount of litter from reproductive organs produced in the mast year was similar to the amount of leaf litter at 900 and 1500 m, but three times as much at 550 m. Leaf numbers per shoot were significantly lower at all elevations in the mast year than in the non-mast years (and the amount of leaf litter at 550 and 1500 m tended to be lower in the mast year than in the non-mast years. In conclusion, preferential allocation of resources to seeds in the mast year reduced the availability of resources for flower primordium formation, and this may have accounted for the poor seed production in the following non-mast year.


Subject(s)
Fagus/growth & development , Nitrogen/metabolism , Fagus/embryology , Fagus/metabolism , Flowers/growth & development , Flowers/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Plant Shoots/metabolism , Seasons , Seeds/growth & development , Seeds/metabolism
4.
Tree Physiol ; 28(2): 277-85, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055438

ABSTRACT

Canopy photosynthetic capacity, measured as leaf maximum carboxylation rate (V (cmax)), is a key factor in ecosystem gas exchange models applied at different scales. We report seasonal and interannual variations in V(cmax) of natural beech stands (Fagus crenata Blume) along an altitudinal gradient in the temperate climate zone of Japan. Estimates are based on 6 years of gas exchange measurements. Pronounced seasonal and interannual variations in V(cmax) normalized to 25 degrees C (V(c,25)) were found for sun leaves. The seasonal pattern of V(c,25) generally followed an inverse parabolic curve, with an increase in spring, peak values in the middle of the growth period and a decline in autumn. Leaf nitrogen concentration (N(l)) and leaf mass per area were significantly related to V(c,25) during spring and summer, but were unrelated in autumn when V(c,25) declined. Annual peak V(c,25) ranged from 40.1 to 97.0 micromol m(-2) s(-1) and varied over as much as a twofold range at a particular site. Annual peak V(c,25) occurred about 28 days before annual peak N(l), with which it was poorly related. Our results show that it can be inappropriate to include constant values of photosynthetic parameters in ecosystem gas exchange models.


Subject(s)
Altitude , Fagus/physiology , Photosynthesis , Seasons , Climate , Fagus/growth & development , Geography , Japan , Nitrogen , Plant Leaves/physiology , Regression Analysis , Reproducibility of Results , Temperature
5.
Tree Physiol ; 27(2): 199-208, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17241962

ABSTRACT

We examined the effects of leaf age and mutual shading on the morphology, photosynthetic properties and nitrogen (N) allocation of foliage of an evergreen understory shrub, Daphniphyllum humile Maxim, growing along a natural light gradient in a deciduous Fagus crenata-dominated forest in Japan. Seedlings in high-light environments were subject to greater mutual shading and 1-year-old foliage survival was lower than in seedlings in low-light environments, indicating that the survival rates of foliage were related to the degree of mutual shading. Although specific leaf area (SLA) in current- and 1-year-old foliage was curvilinearly related to daily photosynthetic photon flux (PPF), SLA was unaffected by leaf age, indicating that foliage in D. humile may not acclimate morphologically to annual changes in light caused by mutual shading. Light-saturated net photosynthetic rates (Pmax) were correlated with daily PPF in current-year foliage. In addition, a strong, positive relationship was found between nitrogen concentration per unit leaf area and Pmax. In contrast, the relationship among PPF, N and photosynthetic parameters in 1-year old foliage was weak because of the strong remobilization of N from older leaves to current-year foliage in plants growing in high light. However, the relationship between daily PPF and both photosynthetic N-use efficiency and the ratio of maximum electron transport rate to maximum carboxylation rate did not differ between current-year and 1-year-old foliage, suggesting that these responses help maintain a high photosynthetic efficiency even in older foliage. We conclude that D. humile maximizes whole-plant carbon gain by maintaining a balance among photosynthetic functions across wide ranges of leaf ages and light environments.


Subject(s)
Magnoliopsida/physiology , Nitrogen/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Seedlings/physiology , Sunlight , Ecosystem , Fagus/physiology , Plant Leaves/physiology
6.
Tree Physiol ; 25(5): 533-44, 2005 May.
Article in English | MEDLINE | ID: mdl-15741146

ABSTRACT

An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.


Subject(s)
Acclimatization/physiology , Fagus/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Sunlight , Carbon/metabolism , Carbon Dioxide/metabolism , Fagus/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
7.
Tree Physiol ; 25(5): 545-56, 2005 May.
Article in English | MEDLINE | ID: mdl-15741147

ABSTRACT

Sap flux density was measured continuously during the 1999 and 2000 growing seasons by the heat dissipation method in natural Fagus crenata Blume (Japanese beech) forests growing between 550 and 1600 m on the northern slope of the Kagura Peak of the Naeba Mountains, Japan. Sap flux density decreased radially toward the inner xylem and the decrease was best expressed in relation to the number of annual rings from the cambium, or in relation to the relative depth between the cambium and the trunk center, rather than as a function of absolute depth. The relative influences of radiation, vapor pressure deficit and soil water on sap flux density during the growing season were similar for the outer and inner xylem, and at all sites. Measurements of soil water content and water potential at a depth of 0.25 m demonstrated that sap flux density responded similarly and sensitively to water potential changes in this soil layer, despite large differences in rooting depth at different elevations, localizing one important control point in the functioning of this forest ecosystem. Identification of the relative influences of radiation, vapor pressure deficit and drying of the upper soil layer on sap flux density provides a framework for in-depth analysis of the control of transpiration in Japanese beech forests. In addition, the finding that the same general controls are operating on sap flux density despite climate gradients and large differences in overall forest stand structure will enhance understanding of water use by forests along elevation gradients.


Subject(s)
Altitude , Fagus/physiology , Sunlight , Water/physiology , Xylem/physiology , Ecosystem , Japan , Microclimate , Soil/analysis , Time Factors , Water/analysis
8.
Tree Physiol ; 25(4): 437-45, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15687092

ABSTRACT

Photoprotective responses during photosynthetic acclimation in Daphniphyllum humile Maxim, an evergreen understory shrub that grows in temperate deciduous forests, were examined in relation to changes in light availability and temperature caused by the seasonal dynamics of canopy leaf phenology. Gradual increases in irradiance in the understory from summer to autumn as overstory foliage senesced were accompanied by increased concentrations of xanthophyll cycle pigments (VAZ) in understory leaves. The chlorophyll (Chl) a/b ratio in understory leaves also increased from summer to autumn, reflecting the change in ratio of the light-harvesting antenna to the reaction center. However, low temperatures following overstory leaf fall reduced Rubisco activity. In contrast, the photosynthetic capactiy of leaves of D. humile growing at the forest border, which was higher in summer than that of leaves of understory plants, decreased in autumn. In autumn, Fv/Fm ratios decreased and concentrations of zeaxanthin (Z) and especially antheraxanthin (A) increased in leaves of both forest-border and understory plants. Although VAZ was twice as high in leaves of forest-border than of understory plants, NPQ was similar in both. We conclude that leaves of understory plants are able to acclimate to seasonal changes in light and temperature by varying their photosynthetic and photoprotective functions, thereby taking advantage of the favorable light conditions caused by overstory leaf fall.


Subject(s)
Acclimatization/physiology , Magnoliopsida/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Seasons , Chlorophyll/physiology , Circadian Rhythm/physiology , Ecosystem , Fagus/physiology , Hot Temperature , Light , Magnoliopsida/metabolism , Microclimate , Photosystem II Protein Complex/metabolism , Pigments, Biological/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Xanthophylls/metabolism
9.
Tree Physiol ; 24(6): 609-16, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15059761

ABSTRACT

Xanthophyll rhodoxanthin, which is present in sun-exposed needles of certain gymnosperms in winter, may have a photoprotective role during long-term cold acclimation. To examine how cold acclimation processes vary within tree crowns and to examine putative correlations between xanthophyll cycle pigments (VAZ), rhodoxanthin and the water-water cycle in photoprotection, we monitored seasonal changes in the activities of two key antioxidant enzymes (ascorbate peroxidase (APX) and glutathione reductase (GR)), pigment composition and chlorophyll fluorescence parameters in sun and shade needles of crowns of the gymnosperm Cryptomeria japonica D. Don. Although APX and GR activities in both sun and shade needles were higher in winter than in summer when assayed at 20 degrees C, differences between seasons were less pronounced when enzymatic activities in summer and winter were assayed at 20 and 5 degrees C, respectively. These results suggest that increases in the potential activity of antioxidant enzymes in winter is an adaptation that helps counterbalance reductions in absolute enzyme activity caused by low temperature, and thus allows the photoprotective capacity of the water-water cycle in C. japonica to be maintained at a roughly constant value throughout the year. In shade needles, the concentration of VAZ increased in winter, but no rhodoxanthin accumulated. Photosynthetic activity was maintained in winter. In sun needles, however, the electron transport rate (ETR) and photochemical quenching (q(P)) decreased to their lowest values in December, just before the accumulation of rhodoxanthin, which coincided with the highest amount of VAZ. Changes in rhodoxanthin concentration mirrored changes in VAZ concentration from January to March. Winter values of ETR and q(P) were comparable with summer values after accumulation of rhodoxanthin, indicating that rhodoxanthin may play a more important role than the VAZ cycle in protecting the photosynthetic apparatus from photodamage in winter. Photosynthetic activity may be modulated, as a result of the interception of light by rhodoxanthin, to match the extent to which absorbed light energy can be utilized in winter when the VAZ cycle is unable to operate effectively because of low temperatures.


Subject(s)
Cryptomeria/physiology , Trees/physiology , Xanthophylls/physiology , Acclimatization/physiology , Antioxidants/analysis , Antioxidants/physiology , Ascorbate Peroxidases , Chlorophyll/analysis , Chlorophyll/physiology , Cold Temperature , Cryptomeria/chemistry , Glutathione Reductase/metabolism , Peroxidases/metabolism , Plant Leaves/chemistry , Plant Leaves/physiology , Seasons , Sunlight , Trees/chemistry , Xanthophylls/analysis , Xanthophylls/chemistry
10.
Tree Physiol ; 19(10): 625-634, 1999 Aug.
Article in English | MEDLINE | ID: mdl-12651318

ABSTRACT

Photosynthetic induction responses to abrupt increases in photon flux density (PFD) to 800 and 1500 &mgr;mol m(-2) s(-1) from either darkness or 100 &mgr;mol m(-2) s(-1) were examined in situ in leaves of Fagus crenata Blume, Daphniphyllum humile Maxim., and Acer rufinerve Siebold & Zucc. growing in a gap and the understory of an F. crenata forest. Among the species studied, F. crenata exhibited the highest assimilation rate (A(100)), stomatal conductance (g(s100)) at the background PFD of 100 &mgr;mol m(-2) s(-1), and A(100)/A(max) (A(max) = maximum assimilation rate), in both the gap and the understory. Time required for full induction depended on both background PFD and maximum PFD. The induction period was 2-4-fold shorter at a background PFD of 100 &mgr;mol m(-2) s(-1) than in darkness. For the three understory species, time required to full induction was 2-3-fold longer when irradiance was increased from darkness to 800 &mgr;mol m(-2) s(-1) than when irradiance was increased from darkness to 1500 &mgr;mol m(-2) s(-1). Acer rufinerve showed higher initial stomatal conductance (g(s0)) and a shorter induction period in the understory than in the gap. Fagus crenata exhibited a similar g(s0) and induction period in both habitats. Daphniphyllum humile demonstrated lower g(s0) and a longer induction period in the understory than in the gap. These findings indicate that initial stomatal conductance is closely correlated with the photosynthetic induction response. We conclude that the photosynthetic induction response is affected by the light conditions experienced by plants before the sudden increase in irradiance and by the extent of the increase in irradiance.

SELECTION OF CITATIONS
SEARCH DETAIL