Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 858, 2018.
Article in English | MEDLINE | ID: mdl-29755448

ABSTRACT

We report extremely low-light-adapted anoxygenic photosynthesis in a thick microbial mat in Magical Blue Hole, Abaco Island, The Bahamas. Sulfur cycling was reduced by iron oxides and organic carbon limitation. The mat grows below the halocline/oxycline at 30 m depth on the walls of the flooded sinkhole. In situ irradiance at the mat surface on a sunny December day was between 0.021 and 0.084 µmol photons m-2 s-1, and UV light (<400 nm) was the most abundant part of the spectrum followed by green wavelengths (475-530 nm). We measured a light-dependent carbon uptake rate of 14.5 nmol C cm-2 d-1. A 16S rRNA clone library of the green surface mat layer was dominated (74%) by a cluster (>97% sequence identity) of clones affiliated with Prosthecochloris, a genus within the green sulfur bacteria (GSB), which are obligate anoxygenic phototrophs. Typical photopigments of brown-colored GSB, bacteriochlorophyll e and (ß-)isorenieratene, were abundant in mat samples and their absorption properties are well-adapted to harvest light in the available green and possibly even UV-A spectra. Sulfide from the water column (3-6 µmol L-1) was the main source of sulfide to the mat as sulfate reduction rates in the mats were very low (undetectable-99.2 nmol cm-3 d-1). The anoxic water column was oligotrophic and low in dissolved organic carbon (175-228 µmol L-1). High concentrations of pyrite (FeS2; 1-47 µmol cm-3) together with low microbial process rates (sulfate reduction, CO2 fixation) indicate that the mats function as net sulfide sinks mainly by abiotic processes. We suggest that abundant Fe(III) (4.3-22.2 µmol cm-3) is the major source of oxidizing power in the mat, and that abiotic Fe-S-reactions play the main role in pyrite formation. Limitation of sulfate reduction by low organic carbon availability along with the presence of abundant sulfide-scavenging iron oxides considerably slowed down sulfur cycling in these mats.

2.
Sci Rep ; 6: 21728, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26906670

ABSTRACT

Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

3.
Proc Natl Acad Sci U S A ; 112(44): E5963-71, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483484

ABSTRACT

We report 95 vertebrate taxa (13 fishes, 11 reptiles, 63 birds, 8 mammals) from late Pleistocene bone deposits in Sawmill Sink, Abaco, The Bahamas. The >5,000 fossils were recovered by scuba divers on ledges at depths of 27-35 m below sea level. Of the 95 species, 39 (41%) no longer occur on Abaco (4 reptiles, 31 birds, 4 mammals). We estimate that 17 of the 39 losses (all of them birds) are linked to changes during the Pleistocene-Holocene Transition (PHT) (∼ 15-9 ka) in climate (becoming more warm and moist), habitat (expansion of broadleaf forest at the expense of pine woodland), sea level (rising from -80 m to nearly modern levels), and island area (receding from ∼ 17,000 km(2) to 1,214 km(2)). The remaining 22 losses likely are related to the presence of humans on Abaco for the past 1,000 y. Thus, the late Holocene arrival of people probably depleted more populations than the dramatic physical and biological changes associated with the PHT.


Subject(s)
Biodiversity , Vertebrates/classification , Animals , West Indies
4.
Proc Natl Acad Sci U S A ; 104(50): 19897-902, 2007 Dec 11.
Article in English | MEDLINE | ID: mdl-18077421

ABSTRACT

We report Quaternary vertebrate and plant fossils from Sawmill Sink, a "blue hole" (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from approximately 4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes.


Subject(s)
Alligators and Crocodiles/anatomy & histology , Falconiformes/anatomy & histology , Fossils , Natural History , Plants/anatomy & histology , Turtles/anatomy & histology , Animals , Bahamas , Humans
SELECTION OF CITATIONS
SEARCH DETAIL