Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Gut Pathog ; 15(1): 64, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057920

ABSTRACT

In this study, four antimicrobial growth promoters, including virginiamycin, josamycin, flavophospholipol, poly 2-propenal 2-propenoic acid and ultraviolet light, were tested for their capacity to induce stx-bacteriophages in 47 Shiga toxin-producing E. coli O157:H7 isolates. Induced bacteriophages were characterized for shiga toxin subtypes and structural genes by PCR, DNA restriction fragment length polymorphisms (RFLP) and morphological features by electron microscopy. Bacteriophages were induced from 72.3% (34/47) of the STEC O157:H7 isolates tested. Bacteriophage induction rates per induction method were as follows: ultraviolet light, 53.2% (25/47); poly 2-propenal 2-propenoic acid, 42.6% (20/47); virginiamycin, 34.0% (16/47); josamycin, 34.0% (16/47); and flavophospholipol, 29.8% (14/47). A total of 98 bacteriophages were isolated, but only 59 were digestible by NdeI, revealing 40 RFLP profiles which could be subdivided in 12 phylogenetic subgroups. Among the 98 bacteriophages, stx2a, stx2c and stx2d were present in 85.7%, 94.9% and 36.7% of bacteriophages, respectively. The Q, P, CIII, N1, N2 and IS1203 genes were found in 96.9%, 82.7%, 69.4%, 40.8%, 60.2% and 73.5% of the samples, respectively. Electron microscopy revealed four main representative morphologies which included three bacteriophages which all had long tails but different head morphologies: long hexagonal head, oval/oblong head and oval/circular head, and one bacteriophage with an icosahedral/hexagonal head with a short thick contractile tail. This study demonstrated that virginiamycin, josamycin, flavophospholipol and poly 2-propenal 2-propenoic acid induce genetically and morphologically diverse free stx-converting bacteriophages from STEC O157:H7. The possibility that these antimicrobial growth promoters may induce bacteriophages in vivo in animals and human hosts is a public health concern. Policies aimed at minimizing or banning the use of antimicrobial growth promoters should be promoted and implemented in countries where these compounds are still in use in animal agriculture.

2.
Toxins (Basel) ; 14(5)2022 05 18.
Article in English | MEDLINE | ID: mdl-35622599

ABSTRACT

Shiga-toxin-producing Escherichia coli is a foodborne pathogen commonly associated with human disease characterized by mild or bloody diarrhea hemorrhagic colitis and hemolytic uremic syndrome. This study investigated the occurrence of STEC in fecal samples of 289 goats in South Africa using microbiological culture and PCR. Furthermore, 628 goat STEC isolates were characterized by serotype (O:H) and major virulence factors by PCR. STEC was found in 80.2% (232/289) of goat fecal samples. Serotyping of 628 STEC isolates revealed 63 distinct serotypes including four of the major top seven STEC serogroups which were detected in 12.1% (35/289) of goats: O157:H7, 2.7% (8/289); O157:H8, 0.3%, (1/289); O157:H29, 0.3% (1/289); O103:H8, 7.6% (22/289); O103:H56, 0.3% (1/289); O26:H2, 0.3% (1/289); O111:H8, 0.3% (1/289) and 59 non-O157 STEC serotypes. Twenty-four of the sixty-three serotypes were previously associated with human disease. Virulence genes were distributed as follows: stx1, 60.6% (381/628); stx2, 72.7% (457/628); eaeA, 22.1% (139/628) and hlyA, 78.0% (490/628). Both stx1 and stx2 were found in 33.4% (210/628) of isolates. In conclusion, goats in South Africa are a reservoir and potential source of diverse STEC serotypes that are potentially virulent for humans. Further molecular characterization will be needed to fully assess the virulence potential of goat STEC isolates and their capacity to cause disease in humans.


Subject(s)
Shiga-Toxigenic Escherichia coli , Animals , Goats , Serogroup , Shiga-Toxigenic Escherichia coli/genetics , South Africa , Virulence
3.
Foodborne Pathog Dis ; 17(7): 440-446, 2020 07.
Article in English | MEDLINE | ID: mdl-31934792

ABSTRACT

This study investigated occurrence and antimicrobial resistance profiles of Campylobacter spp. isolates in beef cattle on five cow-calf operations in South Africa. A total of 537 fecal samples from adult beef cattle (n = 435) and rectal swabs from calves (n = 102) were screened for Campylobacter jejuni, Campylobacter coli, and Campylobacter upsaliensis by culture and polymerase chain reaction. Furthermore, 86 Campylobacter spp. isolates including 46 C. jejuni, 24 C. coli, and 16 C. upsaliensis were tested for antimicrobial resistance against a panel of 9 antimicrobials. Overall, Campylobacter spp. was detected in 29.7% of cattle. Among the 158 Campylobacter spp.-positive cattle, 61.8% carried C. jejuni, 25% carried C. coli, and 10% carried C. upsaliensis. Five animals (3.1%) had mixed infections: three cows carried C. jejuni and C. coli concurrently, one cow had both C. jejuni and C. upsaliensis, and one cow harbored C. coli and C. upsaliensis. Antimicrobial resistance profiling among 86 Campylobacter spp. isolates revealed that 52.3% of the isolates were resistant to one or more antimicrobials. Antimicrobial resistance was observed in 46.7% of C. jejuni isolates, 35.6% of C. coli, and 17.8% of C. upsaliensis. Thirty-six percent of isolates were resistant to clindamycin, 19.7% to nalidixic acid, 18.6% to tetracycline, and 17.4% to erythromycin. Lower resistance rates were recorded for azithromycin (8.1%), florfenicol (3.4%), gentamicin (4.8%), and telithromycin and ciprofloxacin (5.8%). Multidrug resistance (MDR) was observed in 32.5% of isolates. Significantly higher levels of MDR were detected among C. jejuni (36.9%) and C. coli (33.3%) isolates in comparison to C. upsaliensis (18.7%). Two main multiresistance patterns were detected: nalidixic acid/clindamycin (17.8%) and tetracycline/clindamycin (14.2%). To the best of our knowledge, this is the first study which has shown that beef cattle on cow-calf operations in South Africa constitute an important reservoir and a potential source of clinically relevant and antimicrobial resistant Campylobacter spp. strains.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter coli/drug effects , Campylobacter jejuni/drug effects , Campylobacter upsaliensis/drug effects , Drug Resistance, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter coli/isolation & purification , Campylobacter jejuni/isolation & purification , Campylobacter upsaliensis/isolation & purification , Cattle , Feces/microbiology , Microbial Sensitivity Tests , Rectum/microbiology , South Africa/epidemiology
4.
Sci Rep ; 9(1): 11930, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417098

ABSTRACT

In this study, 140 cattle STEC isolates belonging to serogroups O157, O26, O145, O121, O103 and O45 were characterized for 38 virulence-associated genes, antimicrobial resistance profiles and genotyped by PFGE. The majority of isolates carried both stx1 and stx2 concurrently, stx2c, and stx2d; plasmid-encoded genes ehxA, espP, subA and saa but lacked katP and etpD and eaeA. Possession of eaeA was significantly associated with the presence of nle genes, katP, etpD, ureC and terC. However, saa and subA, stx1c and stx1d were only detected in eaeA negative isolates. A complete OI-122 and most non-LEE effector genes were detected in only two eaeA positive serotypes, including STEC O157:H7 and O103:H2. The eaeA gene was detected in STEC serotypes that are commonly implicated in severe humans disease and outbreaks including STEC O157:H7, STEC O145:H28 and O103:H2. PFGE revealed that the isolates were highly diverse with very low rates of antimicrobial resistance. In conclusion, only a small number of cattle STEC serotypes that possessed eaeA, had the highest number of virulence-associated genes, indicative of their high virulence. Further characterization of STEC O157:H7, STEC O145:H28 and O103:H2 using whole genome sequencing will be needed to fully understand their virulence potential for humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cattle/microbiology , Drug Resistance, Bacterial/genetics , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , CpG Islands/genetics , Drug Resistance, Bacterial/drug effects , Electrophoresis, Gel, Pulsed-Field , Genes, Bacterial , Microbial Sensitivity Tests , Phylogeny , Plasmids/genetics , Shiga-Toxigenic Escherichia coli/drug effects , South Africa , Virulence/drug effects , Virulence/genetics
5.
Toxins (Basel) ; 11(7)2019 07 19.
Article in English | MEDLINE | ID: mdl-31331115

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) isolates (N = 38) that were incriminated in human disease from 2006 to 2013 in South Africa were characterized by serotype, virulence-associated genes, antimicrobial resistance and pulsed-field gel electrophoresis (PFGE). The isolates belonged to 11 O:H serotypes. STEC O26:H11 (24%) was the most frequent serotype associated with human disease, followed by O111:H8 (16%), O157:H7 (13%) and O117:H7 (13%). The majority of isolates were positive for key virulence-associated genes including stx1 (84%), eaeA (61%), ehxA (68.4%) and espP (55%), but lacked stx2 (29%), katP (42%), etpD (16%), saa (16%) and subA (3%). stx2 positive isolates carried stx2c (26%) and/or stx2d (26%) subtypes. All pathogenicity island encoded virulence marker genes were detected in all (100%) isolates except nleA (47%), nleC (84%) and nleD (76%). Multidrug resistance was observed in 89% of isolates. PFGE revealed 34 profiles with eight distinct clusters that shared ≥80% intra-serotype similarity, regardless of the year of isolation. In conclusion, STEC isolates that were implicated in human disease between 2006 and 2013 in South Africa were mainly non-O157 strains which possessed virulence genes and markers commonly associated with STEC strains that have been incriminated in mild to severe human disease worldwide. Improved STEC monitoring and surveillance programs are needed in South Africa to control and prevent STEC disease in humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Shiga-Toxigenic Escherichia coli , Escherichia coli Infections/epidemiology , Humans , Serogroup , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/pathogenicity , South Africa/epidemiology , Virulence/genetics
6.
Onderstepoort J Vet Res ; 86(1): e1-e6, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31170781

ABSTRACT

Reports on the occurrence of Campylobacter spp. in dogs in South Africa are non-existent. This study investigated the prevalence of Campylobacter spp. in 481 dogs visiting four rural community veterinary clinics in South Africa. Dogs were screened for Campylobacter spp. by culture and polymerase chain reaction (PCR), and logistic regression analysis was performed to assess the association between sex, clinic, breed and age and the occurrence of Campylobacter spp. in dogs. The prevalence of Campylobacter spp. was 41.50% (95% confidence interval [CI], 37.39% - 46.04%). Campylobacter jejuni, C. upsaliensis and C. coli were detected in 29.31% (95% CI, 25.42% - 33.54%), 13.10% (95% CI, 10.37% - 16.42%) and 5.41% (95% CI, 3.71% - 7.82%) of dogs, respectively. Dogs carrying more than one species of Campylobacter spp. accounted for 6.23% (95% CI, 4.40% - 8.78%). Campylobacter upsaliensis and C. jejuni were detected in 3.74% (95% CI, 2.37% - 5.86%), whereas C. coli and C. jejuni were found in 2.49% (95% CI, 1.42% - 4.34%) of dogs. Age and clinic were the risk factors significantly associated with Campylobacter spp. occurrence, while age, breed and clinic were predictors of C. jejuni carriage. Furthermore, age was the only risk factor associated with a higher likelihood of carrying C. upsaliensis. The prevalence of Campylobacter spp. C. jejuni and C. upsaliensis increased significantly as dogs grew older. In addition, the odds of carrying Campylobacter spp. were higher in the Staffordshire bull terrier breed compared to crossbreed dogs. In conclusion, this study shows that dogs visiting rural community veterinary clinics in South Africa are reservoirs of Campylobacter spp. and may be potential sources of Campylobacter spp. for humans living in close proximity of the dog populations under study.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter jejuni/isolation & purification , Campylobacter upsaliensis/isolation & purification , Dog Diseases/epidemiology , Animals , Campylobacter Infections/epidemiology , Campylobacter Infections/etiology , Campylobacter Infections/prevention & control , Campylobacter jejuni/genetics , Campylobacter upsaliensis/genetics , Cross-Sectional Studies , Dog Diseases/etiology , Dog Diseases/prevention & control , Dogs , Female , Hospitals, Animal , Male , Polymerase Chain Reaction/veterinary , Prevalence , Risk Factors , Rural Population , South Africa/epidemiology
7.
Zoonoses Public Health ; 65(7): 777-789, 2018 11.
Article in English | MEDLINE | ID: mdl-29984530

ABSTRACT

Cattle are a major reservoir of Shiga toxin-producing Escherichia coli. This study investigated the occurrence of seven major STEC serogroups including O157, O145, O103, O121, O111, O45 and O26 among 578 STEC isolates previously recovered from 559 cattle. The isolates were characterized for serotype and major virulence genes. Polymerase chain reaction revealed that 41.7% (241/578) of isolates belonged to STEC O157, O145, O103, O121, O45 and O26, and 33 distinct serotypes. The 241 isolates corresponded to 16.5% (92/559) of cattle that were STEC positive. The prevalence of cattle that tested positive for at least one of the six serogroups across the five farms was variable ranging from 2.9% to 43.4%. Occurrence rates for individual serogroups were as follows: STEC O26 was found in 10.2% (57/559); O45 in 2.9% (16/559); O145 in 2.5% (14/559); O157 in 1.4% (8/559); O121 in 1.1% (6/559); and O103 in 0.4% (2/559). The following proportions of virulence genes were observed: stx1, 69.3% (167/241); stx2, 96.3% (232/241); eaeA, 7.1% (17/241); ehxA, 92.5% (223/241); and both stx1 and stx2, 62.2% (150/241) of isolates. These findings are evidence that cattle in South Africa carry STEC that belong to six major STEC serogroups commonly incriminated in human disease. However, only a subset of serotypes associated with these serogroups were clinically relevant in human disease. Most STEC isolates carried stx1, stx2 and ehxA but lacked eaeA, a major STEC virulence factor in human disease.


Subject(s)
Cattle Diseases/microbiology , Escherichia coli Infections/microbiology , Serogroup , Shiga-Toxigenic Escherichia coli/classification , Animals , Cattle , Cattle Diseases/epidemiology , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity , South Africa/epidemiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL