Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
2.
Nat Struct Mol Biol ; 29(2): 85-96, 2022 02.
Article in English | MEDLINE | ID: mdl-35102319

ABSTRACT

Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-61 is physiologically relevant.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Animals , Animals, Genetically Modified , Biocatalysis , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Silencing , Heterochromatin/genetics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Methylation , Models, Biological , Mutation , Transcription, Genetic
3.
Genes Dev ; 35(1-2): 82-101, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33303642

ABSTRACT

The establishment and maintenance of chromatin domains shape the epigenetic memory of a cell, with the methylation of histone H3 lysine 9 (H3K9me) defining transcriptionally silent heterochromatin. We show here that the C. elegans SET-25 (SUV39/G9a) histone methyltransferase (HMT), which catalyzes H3K9me1, me2 and me3, can establish repressed chromatin domains de novo, unlike the SETDB1 homolog MET-2. Thus, SET-25 is needed to silence novel insertions of RNA or DNA transposons, and repress tissue-specific genes de novo during development. We identify two partially redundant pathways that recruit SET-25 to its targets. One pathway requires LIN-61 (L3MBTL2), which uses its four MBT domains to bind the H3K9me2 deposited by MET-2. The second pathway functions independently of MET-2 and involves the somatic Argonaute NRDE-3 and small RNAs. This pathway targets primarily highly conserved RNA and DNA transposons. These redundant SET-25 targeting pathways (MET-2-LIN-61-SET-25 and NRDE-3-SET-25) ensure repression of intact transposons and de novo insertions, while MET-2 can act alone to repress simple and satellite repeats. Removal of both pathways in the met-2;nrde-3 double mutant leads to the loss of somatic H3K9me2 and me3 and the synergistic derepression of transposons in embryos, strongly elevating embryonic lethality.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation/genetics , Heterochromatin/genetics , RNA-Binding Proteins/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Embryo, Nonmammalian , Gene Silencing , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Methylation , Mutation , RNA-Binding Proteins/genetics
4.
Nat Cell Biol ; 22(5): 579-590, 2020 05.
Article in English | MEDLINE | ID: mdl-32251399

ABSTRACT

In fission yeast and plants, RNA processing and degradation contribute to heterochromatin silencing, alongside conserved pathways of transcriptional repression. It has not been known whether similar pathways exist in metazoans. Here, we describe a pathway of silencing in Caenorhabditis elegans somatic cells, in which the highly conserved RNA-binding complex LSM2-8 contributes selectively to the repression of heterochromatic reporters and endogenous genes bearing the Polycomb mark, histone H3K27me3. This acts by degrading selected transcripts through the XRN-2 exoribonuclease. Disruption of the LSM2-8 pathway leads to mRNA stabilization. Unlike previously described pathways of heterochromatic RNA degradation, LSM2-8-mediated RNA degradation does not target nor require H3K9 methylation. Intriguingly, loss of this pathway coincides with a localized reduction in H3K27me3 at lsm-8-sensitive loci. We have thus uncovered a mechanism of RNA degradation that selectively contributes to the silencing of a subset of H3K27me3-marked genes, revealing a previously unrecognized layer of post-transcriptional control in metazoan heterochromatin.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Exoribonucleases/genetics , Histones/genetics , RNA Stability/genetics , Ribonucleoproteins, Small Nuclear/genetics , Animals , Caenorhabditis elegans/genetics , Gene Silencing/physiology , Heterochromatin/genetics , Methylation , Polycomb-Group Proteins/genetics , RNA Interference/physiology , RNA, Messenger/genetics , RNA, Small Interfering/genetics
5.
Genes Dev ; 34(7-8): 560-579, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32139421

ABSTRACT

Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Cell Nucleus/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Deletion , Muscular Dystrophy, Emery-Dreifuss/genetics , Animals , Binding Sites/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Nucleus/pathology , Chromatin/genetics , Disease Models, Animal , Genome, Helminth/genetics , Laminin/genetics , Laminin/metabolism , Muscles/physiopathology , Muscular Dystrophy, Emery-Dreifuss/physiopathology , Mutation , Protein Structure, Tertiary/genetics , Sarcomeres/chemistry , Sarcomeres/genetics , Transcription, Genetic/genetics
6.
Nature ; 569(7758): 734-739, 2019 05.
Article in English | MEDLINE | ID: mdl-31118512

ABSTRACT

The execution of developmental programs of gene expression requires an accurate partitioning of the genome into subnuclear compartments, with active euchromatin enriched centrally and silent heterochromatin at the nuclear periphery1. The existence of degenerative diseases linked to lamin A mutations suggests that perinuclear binding of chromatin contributes to cell-type integrity2,3. The methylation of lysine 9 of histone H3 (H3K9me) characterizes heterochromatin and mediates both transcriptional repression and chromatin anchoring at the inner nuclear membrane4. In Caenorhabditis elegans embryos, chromodomain protein CEC-4 bound to the inner nuclear membrane tethers heterochromatin through H3K9me3,5, whereas in differentiated tissues, a second heterochromatin-sequestering pathway is induced. Here we use an RNA interference screen in the cec-4 background and identify MRG-1 as a broadly expressed factor that is necessary for this second chromatin anchor in intestinal cells. However, MRG-1 is exclusively bound to euchromatin, suggesting that it acts indirectly. Heterochromatin detachment in double mrg-1; cec-4 mutants is rescued by depleting the histone acetyltransferase CBP-1/p300 or the transcription factor ATF-8, a member of the bZIP family (which is known to recruit CBP/p300). Overexpression of CBP-1 in cec-4 mutants is sufficient to delocalize heterochromatin in an ATF-8-dependent manner. CBP-1 and H3K27ac levels increase in heterochromatin upon mrg-1 knockdown, coincident with delocalization. This suggests that the spatial organization of chromatin in C. elegans is regulated both by the direct perinuclear attachment of silent chromatin, and by an active retention of CBP-1/p300 in euchromatin. The two pathways contribute differentially in embryos and larval tissues, with CBP-1 sequestration by MRG-1 having a major role in differentiated cells.


Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Chromatin/genetics , Chromatin/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Animals , Caenorhabditis elegans/anatomy & histology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Euchromatin/genetics , Euchromatin/metabolism , Gain of Function Mutation , Genes, Reporter/genetics , Histone Acetyltransferases/deficiency , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/metabolism , Intestines/cytology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Genes Dev ; 33(7-8): 436-451, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30804228

ABSTRACT

Caenorhabditis elegans has two histone H3 Lys9 methyltransferases, MET-2 (SETDB1 homolog) and SET-25 (G9a/SUV39H1 related). In worms, we found simple repeat sequences primarily marked by H3K9me2, while transposable elements and silent tissue-specific genes bear H3K9me3. RNA sequencing (RNA-seq) in histone methyltransferase (HMT) mutants shows that MET-2-mediated H3K9me2 is necessary for satellite repeat repression, while SET-25 silences a subset of transposable elements and tissue-specific genes through H3K9me3. A genome-wide synthetic lethality screen showed that RNA processing, nuclear RNA degradation, the BRCA1/BARD1 complex, and factors mediating replication stress survival are necessary for germline viability in worms lacking MET-2 but not SET-25. Unlike set-25 mutants, met-2-null worms accumulated satellite repeat transcripts, which form RNA:DNA hybrids on repetitive sequences, additively with the loss of BRCA1 or BARD1. BRCA1/BARD1-mediated H2A ubiquitination and MET-2 deposited H3K9me2 on satellite repeats are partially interdependent, suggesting both that the loss of silencing generates BRCA-recruiting DNA damage and that BRCA1 recruitment by damage helps silence repeats. The artificial induction of MSAT1 transcripts can itself trigger damage-induced germline lethality in a wild-type background, arguing that the synthetic sterility upon BRCA1/BARD1 and H3K9me2 loss is directly linked to the DNA damage provoked by unscheduled satellite repeat transcription.


Subject(s)
BRCA1 Protein/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Gene Expression Regulation, Developmental/genetics , Histones/genetics , Animals , BRCA1 Protein/metabolism , Caenorhabditis elegans Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Transposable Elements/genetics , Embryo, Nonmammalian , Fertility/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Microsatellite Repeats/genetics , Mutation , RNA Processing, Post-Transcriptional/genetics , Temperature
8.
Article in English | MEDLINE | ID: mdl-32350050

ABSTRACT

In fission yeast and plants, RNA-processing pathways contribute to heterochromatin silencing, complementing well-characterized pathways of transcriptional repression. However, it was unclear whether this additional level of regulation occurs in metazoans. In a genetic screen, we uncovered a pathway of silencing in Caenorhabditis elegans somatic cells, whereby the highly conserved, RNA-binding complex LSM2-8 contributes to the repression of heterochromatic reporters and endogenous genes bearing the Polycomb mark H3K27me3. Importantly, the LSM2-8 complex works cooperatively with a 5'-3' exoribonuclease, XRN-2, and disruption of the pathway leads to selective mRNA stabilization. LSM2-8 complex-mediated RNA degradation does not target nor depend on H3K9me2/me3, unlike previously described pathways of heterochromatic RNA degradation. Up-regulation of lsm-8-sensitive loci coincides with a localized drop in H3K27me3 levels in the lsm-8 mutant. Put into the context of epigenetic control of gene expression, it appears that targeted RNA degradation helps repress a subset of H3K27me3-marked genes, revealing an unappreciated layer of regulation for facultative heterochromatin in animals.

9.
Nat Genet ; 48(11): 1385-1395, 2016 11.
Article in English | MEDLINE | ID: mdl-27668659

ABSTRACT

Histone H3 lysine 9 (H3K9) methylation is a conserved modification that generally represses transcription. In Caenorhabditis elegans it is enriched on silent tissue-specific genes and repetitive elements. In met-2 set-25 double mutants, which lack all H3K9 methylation (H3K9me), embryos differentiate normally, although mutant adults are sterile owing to extensive DNA-damage-driven apoptosis in the germ line. Transposons and simple repeats are derepressed in both germline and somatic tissues. This unprogrammed transcription correlates with increased rates of repeat-specific insertions and deletions, copy number variation, R loops and enhanced sensitivity to replication stress. We propose that H3K9me2 or H3K9me3 stabilizes and protects repeat-rich genomes by suppressing transcription-induced replication stress.


Subject(s)
Caenorhabditis elegans/metabolism , Histones/metabolism , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , DNA, Helminth/metabolism , Fertility , Genes, Helminth , Histone-Lysine N-Methyltransferase/metabolism , Interspersed Repetitive Sequences , Lysine/metabolism , Methylation , Nucleic Acid Hybridization , RNA Stability , RNA, Helminth/metabolism , Temperature
10.
Cell ; 163(6): 1333-47, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26607792

ABSTRACT

Interphase chromatin is organized in distinct nuclear sub-compartments, reflecting its degree of compaction and transcriptional status. In Caenorhabditis elegans embryos, H3K9 methylation is necessary to silence and to anchor repeat-rich heterochromatin at the nuclear periphery. In a screen for perinuclear anchors of heterochromatin, we identified a previously uncharacterized C. elegans chromodomain protein, CEC-4. CEC-4 binds preferentially mono-, di-, or tri-methylated H3K9 and localizes at the nuclear envelope independently of H3K9 methylation and nuclear lamin. CEC-4 is necessary for endogenous heterochromatin anchoring, but not for transcriptional repression, in contrast to other known H3K9 methyl-binders in worms, which mediate gene repression but not perinuclear anchoring. When we ectopically induce a muscle differentiation program in embryos, cec-4 mutants fail to commit fully to muscle cell fate. This suggests that perinuclear sequestration of chromatin during development helps restrict cell differentiation programs by stabilizing commitment to a specific cell fate. PAPERCLIP.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/metabolism , Embryo, Nonmammalian/cytology , Heterochromatin , Histone Code , Amino Acid Sequence , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cell Differentiation , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Embryo, Nonmammalian/metabolism , Molecular Sequence Data , Sequence Alignment
11.
EMBO Rep ; 14(11): 984-91, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24018421

ABSTRACT

The regulation of chromatin mobility in response to DNA damage is important for homologous recombination in yeast. Anchorage reduces rates of recombination, whereas increased chromatin mobility correlates with more efficient homology search. Here we tracked the mobility and localization of spontaneous S-phase lesions bound by Rad52, and find that these foci have reduced movement, unlike enzymatically induced double-strand breaks. Moreover, spontaneous repair foci are positioned in the nuclear core, abutting the nucleolus. We show that cohesin and nucleolar integrity constrain the mobility of these foci, consistent with the notion that spontaneous, S-phase damage is preferentially repaired from the sister chromatid.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Nucleolus/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Repair , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Chromatids/metabolism , DNA Damage , Homologous Recombination , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cohesins
12.
J Cell Biol ; 200(5): 589-604, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23460676

ABSTRACT

Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Heat-Shock Proteins/metabolism , Heat-Shock Response , Nuclear Pore/enzymology , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Active Transport, Cell Nucleus , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chromatin Immunoprecipitation , Gene Expression Regulation , Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Microscopy, Fluorescence , RNA Interference , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Time Factors , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic
13.
Cell ; 150(5): 934-47, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22939621

ABSTRACT

The factors that sequester transcriptionally repressed heterochromatin at the nuclear periphery are currently unknown. In a genome-wide RNAi screen, we found that depletion of S-adenosylmethionine (SAM) synthetase reduces histone methylation globally and causes derepression and release of heterochromatin from the nuclear periphery in Caenorhabditis elegans embryos. Analysis of histone methyltransferases (HMTs) showed that elimination of two HMTs, MET-2 and SET-25, mimics the loss of SAM synthetase, abrogating the perinuclear attachment of heterochromatic transgenes and of native chromosomal arms rich in histone H3 lysine 9 methylation. The two HMTs target H3K9 in a consecutive fashion: MET-2, a SETDB1 homolog, mediates mono- and dimethylation, and SET-25, a previously uncharacterized HMT, deposits H3K9me3. SET-25 colocalizes with its own product in perinuclear foci, in a manner dependent on H3K9me3, but not on its catalytic domain. This colocalization suggests an autonomous, self-reinforcing mechanism for the establishment and propagation of repeat-rich heterochromatin.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Cell Nucleus/chemistry , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans Proteins/genetics , Chromosomes/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Genome, Helminth , Histone-Lysine N-Methyltransferase/analysis , Histone-Lysine N-Methyltransferase/genetics , Lamins/metabolism , Methionine Adenosyltransferase/metabolism , Methylation , Mutation
14.
Nat Cell Biol ; 14(5): 502-9, 2012 Apr 08.
Article in English | MEDLINE | ID: mdl-22484486

ABSTRACT

Chromatin mobility is thought to facilitate homology search during homologous recombination and to shift damage either towards or away from specialized repair compartments. However, unconstrained mobility of double-strand breaks could also promote deleterious chromosomal translocations. Here we use live time-lapse fluorescence microscopy to track the mobility of damaged DNA in budding yeast. We found that a Rad52-YFP focus formed at an irreparable double-strand break moves in a larger subnuclear volume than the undamaged locus. In contrast, Rad52-YFP bound at damage arising from a protein-DNA adduct shows no increase in movement. Mutant analysis shows that enhanced double-strand-break mobility requires Rad51, the ATPase activity of Rad54, the ATR homologue Mec1 and the DNA-damage-response mediator Rad9. Consistent with a role for movement in the homology-search step of homologous recombination, we show that recombination intermediates take longer to form in cells lacking Rad9.


Subject(s)
Cell Cycle Proteins/physiology , DNA Damage , Intracellular Signaling Peptides and Proteins/physiology , Protein Serine-Threonine Kinases/physiology , Recombination, Genetic , Saccharomyces cerevisiae Proteins/physiology , Chromatin/metabolism , Microscopy, Fluorescence , Saccharomyces cerevisiae/metabolism
15.
Nat Cell Biol ; 13(7): 867-74, 2011 Jun 12.
Article in English | MEDLINE | ID: mdl-21666682

ABSTRACT

Budding yeast telomeres are reversibly bound at the nuclear envelope through two partially redundant pathways that involve the Sir2/3/4 silencing complex and the Yku70/80 heterodimer. To better understand how this is regulated, we studied the role of SUMOylation in telomere anchoring. We find that the PIAS-like SUMO E3 ligase Siz2 sumoylates both Yku70/80 and Sir4 in vivo and promotes telomere anchoring to the nuclear envelope. Remarkably, loss of Siz2 also provokes telomere extension in a telomerase-dependent manner that is epistatic with loss of the helicase Pif1. Consistent with our previously documented role for telomerase in anchorage, normal telomere anchoring in siz2 Δ is restored by PIF1 deletion. By live-cell imaging of a critically short telomere, we show that telomeres shift away from the nuclear envelope when elongating. We propose that SUMO-dependent association with the nuclear periphery restrains bound telomerase, whereas active elongation correlates with telomere release.


Subject(s)
Nuclear Envelope/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Telomerase/metabolism , Telomere/enzymology , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Microscopy, Fluorescence , Mutation , Protein Processing, Post-Translational , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sumoylation , Time Factors
16.
Methods Enzymol ; 470: 535-67, 2010.
Article in English | MEDLINE | ID: mdl-20946824

ABSTRACT

We describe here optimized protocols for tagging genomic DNA sequences with bacterial operator sites to enable visualization of specific loci in living budding yeast cells. Quantitative methods for the analysis of locus position relative to the nuclear center or nuclear pores, the analysis of chromatin dynamics and the relative position of tagged loci to other nuclear landmarks are described. Methods for accurate immunolocalization of nuclear proteins without loss of three-dimensional structure, in combination with fluorescence in situ hybridization, are also presented. These methods allow a robust analysis of subnuclear organization of both proteins and DNA in intact yeast cells.


Subject(s)
Cell Nucleus/metabolism , Chromosomes, Fungal/genetics , Saccharomycetales/cytology , Saccharomycetales/genetics , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Saccharomycetales/metabolism
17.
PLoS Genet ; 6(4): e1000910, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20419146

ABSTRACT

Actin-related proteins are ubiquitous components of chromatin remodelers and are conserved from yeast to man. We have examined the role of the budding yeast actin-related protein Arp6 in gene expression, both as a component of the SWR1 complex (SWR-C) and in its absence. We mapped Arp6 binding sites along four yeast chromosomes using chromatin immunoprecipitation from wild-type and swr1 deleted (swr1Delta) cells. We find that a majority of Arp6 binding sites coincide with binding sites of Swr1, the catalytic subunit of SWR-C, and with the histone H2A variant Htz1 (H2A.Z) deposited by SWR-C. However, Arp6 binding detected at centromeres, the promoters of ribosomal protein (RP) genes, and some telomeres is independent of Swr1 and Htz1 deposition. Given that RP genes and telomeres both show association with the nuclear periphery, we monitored the ability of Arp6 to mediate the localization of chromatin to nuclear pores. Arp6 binding is sufficient to shift a randomly positioned locus to nuclear periphery, even in a swr1Delta strain. Arp6 is also necessary for the pore association of its targeted RP promoters possibly through cell cycle-dependent factors. Loss of Arp6, but not Htz1, leads to an up-regulation of these RP genes. In contrast, the pore-association of GAL1 correlates with Htz1 deposition, and loss of Arp6 reduces both GAL1 activation and peripheral localization. We conclude that Arp6 functions both together with the nucleosome remodeler Swr1 and also without it, to mediate Htz1-dependent and Htz1-independent binding of chromatin domains to nuclear pores. This association is shown to have modulating effects on gene expression.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Gene Expression , Histones/metabolism , Microfilament Proteins/metabolism , Nuclear Pore/metabolism , Ribosomal Proteins/genetics , Binding Sites , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/genetics , Histones/genetics , Microfilament Proteins/genetics
18.
Genes Dev ; 23(8): 928-38, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19390087

ABSTRACT

Telomeres form the ends of linear chromosomes and protect these ends from being recognized as DNA double-strand breaks. Telomeric sequences are maintained in most cells by telomerase, a reverse transcriptase that adds TG-rich repeats to chromosome ends. In budding yeast, telomeres are organized in clusters at the nuclear periphery by interactions that depend on components of silent chromatin and the telomerase-binding factor yeast Ku (yKu). In this study, we examined whether the subnuclear localization of telomeres affects end maintenance. A telomere anchoring pathway involving the catalytic yeast telomerase subunits Est2, Est1, and Tlc1 is shown to be necessary for the perinuclear anchoring activity of Yku80 during S phase. Additionally, we identify the conserved Sad1-UNC-84 (SUN) domain protein Mps3 as the principal membrane anchor for this pathway. Impaired interference with Mps3 anchoring through overexpression of the Mps3 N terminus in a tel1 deletion background led to a senescence phenotype and to deleterious levels of subtelomeric Y' recombination. This suggests that telomere binding to the nuclear envelope helps protect telomeric repeats from recombination. Our results provide an example of a specialized structure that requires proper spatiotemporal localization to fulfill its biological role, and identifies a novel pathway of telomere protection.


Subject(s)
Membrane Proteins/metabolism , Recombination, Genetic/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Proteins , Protein Binding , Recombination, Genetic/genetics , S Phase/physiology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
19.
Genome Res ; 18(2): 261-71, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18096749

ABSTRACT

The 32 telomeres in the budding yeast genome cluster in three to seven perinuclear foci. Although individual telomeres and telomeric foci are in constant motion, preferential juxtaposition of some telomeres has been scored. To examine the principles that guide such long-range interactions, we differentially tagged pairs of chromosome ends and developed an automated three-dimensional measuring tool that determines distances between two telomeres. In yeast, all chromosomal ends terminate in TG(1-3) and middle repetitive elements, yet subgroups of telomeres also share extensive homology in subtelomeric coding domains. We find that up to 21 kb of >90% sequence identity does not promote telomere pairing in interphase cells. To test whether unique sequence elements, arm length, or chromosome territories influence juxtaposition, we reciprocally swapped terminal domains or entire chromosomal arms from one chromosome to another. We find that the distal 10 kb of Tel6R promotes interaction with Tel6L, yet only when the two telomeres are present on the same chromosome. By manipulating the length and sequence composition of the right arm of chr 5, we confirm that contact between telomeres on opposite chromatid arms of equal length is favored. These results can be explained by the polarized Rabl arrangement of yeast centromeres and telomeres, which promote to telomere pairing by allowing contact between chromosome arms of equal length in anaphase.


Subject(s)
Chromosomes, Fungal/genetics , Crossing Over, Genetic/genetics , Gene Expression Regulation, Fungal/genetics , Saccharomyces cerevisiae/genetics , Telomere/metabolism , Blotting, Southern , Electrophoresis, Agar Gel , Microscopy, Fluorescence , Telomere/genetics
20.
Nature ; 441(7094): 774-8, 2006 Jun 08.
Article in English | MEDLINE | ID: mdl-16760983

ABSTRACT

The organization of the nucleus into subcompartments creates microenvironments that are thought to facilitate distinct nuclear functions. In budding yeast, regions of silent chromatin, such as those at telomeres and mating-type loci, cluster at the nuclear envelope creating zones that favour gene repression. Other reports indicate that gene transcription occurs at the nuclear periphery, apparently owing to association of the gene with nuclear pore complexes. Here we report that transcriptional activation of a subtelomeric gene, HXK1 (hexokinase isoenzyme 1), by growth on a non-glucose carbon source led to its relocalization to nuclear pores. This relocation required the 3' untranslated region (UTR), which is essential for efficient messenger RNA processing and export, consistent with an accompanying report. However, activation of HXK1 by an alternative pathway based on the transactivator VP16 moved the locus away from the nuclear periphery and abrogated the normal induction of HXK1 by galactose. Notably, when we interfered with HXK1 localization by either antagonizing or promoting association with the pore, transcript levels were reduced or enhanced, respectively. From this we conclude that nuclear position has an active role in determining optimal gene expression levels.


Subject(s)
Gene Expression Regulation, Fungal/genetics , Genes, Fungal/genetics , Nuclear Pore/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , 3' Untranslated Regions/genetics , Galactose/metabolism , Galactose/pharmacology , Gene Expression Regulation, Fungal/drug effects , Hexokinase/genetics , Isoenzymes/genetics , Nuclear Pore/genetics , RNA, Fungal/biosynthesis , RNA, Fungal/genetics , RNA, Fungal/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL