Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Viruses ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38932169

ABSTRACT

Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNß transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNß accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.


Subject(s)
Cytomegalovirus , Membrane Proteins , Myeloid Cells , Nucleotidyltransferases , Protein Serine-Threonine Kinases , Signal Transduction , Valproic Acid , Humans , Valproic Acid/pharmacology , Myeloid Cells/virology , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Signal Transduction/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytomegalovirus/physiology , Cytomegalovirus/drug effects , Cytomegalovirus/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/genetics , Virus Latency/drug effects , Transcription, Genetic/drug effects , Cell Differentiation/drug effects , Gene Expression Regulation, Viral/drug effects , Genes, Immediate-Early , Interferon-beta/metabolism , Interferon-beta/genetics
2.
mBio ; 15(6): e0016224, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38695580

ABSTRACT

Herpesvirus genomes are maintained as extrachromosomal plasmids within the nuclei of infected cells. Some herpesviruses persist within dividing cells, putting the viral genome at risk of being lost to the cytoplasm during mitosis because karyokinesis (nuclear division) requires nuclear envelope breakdown. Oncogenic herpesviruses (and papillomaviruses) avoid genome loss during mitosis by tethering their genomes to cellular chromosomes, thereby ensuring viral genome uptake into newly formed nuclei. These viruses use viral proteins with DNA- and chromatin-binding capabilities to physically link viral and cellular genomes together in a process called tethering. The known viral tethering proteins of human papillomavirus (E2), Epstein-Barr virus (EBNA1), and Kaposi's sarcoma-associated herpesvirus (LANA) each contain two independent domains required for genome tethering, one that binds sequence specifically to the viral genome and another that binds to cellular chromatin. This latter domain is called a chromatin tethering domain (CTD). The human cytomegalovirus UL123 gene encodes a CTD that is required for the virus to productively infect dividing fibroblast cells within the S phase of the cell cycle, presumably by tethering the viral genome to cellular chromosomes during mitosis. The CTD-containing UL123 gene product that supports S-phase infections is the IE19 protein. Here, we define two motifs in IE19 required for S-phase infections: an N-terminal triple lysine motif and a C-terminal nucleosome-binding motif within the CTD.IMPORTANCEThe IE19 protein encoded by human cytomegalovirus (HCMV) is required for S-phase infection of dividing cells, likely because it tethers the viral genome to cellular chromosomes, thereby allowing them to survive mitosis. The mechanism through which IE19 tethers viral genomes to cellular chromosomes is not understood. For human papillomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, viral genome tethering is required for persistence (latency) and pathogenesis (oncogenesis). Like these viruses, HCMV also achieves latency, and it modulates the properties of glioblastoma multiforme tumors. Therefore, defining the mechanism through which IE19 tethers viral genomes to cellular chromosomes may help us understand, and ultimately combat or control, HCMV latency and oncomodulation.


Subject(s)
Cytomegalovirus , Nucleosomes , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus/physiology , Nucleosomes/metabolism , Nucleosomes/genetics , S Phase , Lysine/metabolism , Lysine/genetics , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Protein Binding , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Amino Acid Motifs
3.
J Virol ; 97(3): e0002923, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36856444

ABSTRACT

The major immediate early enhancer and promoter (MIEP) of human cytomegalovirus (HCMV) drives the transcription of the immediate early one (IE1) and IE2 genes, whose encoded proteins stimulate productive, lytic replication. The MIEP is activated by the virally encoded and tegument-delivered pp71 protein at the start of de novo lytic infections of fully differentiated cells. Conversely, the MIEP is silenced at the start of de novo latent infections within incompletely differentiated myeloid cells in part because tegument-delivered pp71 is sequestered in the cytoplasm in these cells, but also by viral factors that repress transcription from this locus, including the UL138 protein. During both modes of infection, MIEP activity can be increased by the histone deacetylase inhibitor valproic acid (VPA); however, UL138 inhibits the VPA-responsiveness of the MIEP. Here, we show that two families of cellular transcription factors, NF-κB and cAMP response element-binding protein (CREB), together control the VPA-mediated activation and UL138-mediated repression of the HCMV MIEP. IMPORTANCE Artificial regulation of the HCMV MIEP, either activation or repression, is an attractive potential means to target the latent reservoirs of virus for which there is currently no available intervention. The MIEP could be repressed to prevent latency reactivation or induced to drive the virus into the lytic stage that is visible to the immune system and inhibited by multiple small-molecule antiviral drugs. Understanding how the MIEP is regulated is a critical part of designing and implementing either strategy. Our revelation here that NF-κB and CREB control the responsiveness of the MIEP to the viral UL138 protein and the FDA-approved drug VPA could help in the formulation and execution of promoter regulatory strategies against latent HCMV.


Subject(s)
Cytomegalovirus , NF-kappa B , Humans , Cyclic AMP/metabolism , Cytomegalovirus/physiology , Gene Expression Regulation, Viral , NF-kappa B/genetics , NF-kappa B/metabolism , Response Elements , Valproic Acid/pharmacology , Valproic Acid/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
4.
J Virol ; 96(22): e0126922, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36314821

ABSTRACT

Multiplication of the invertebrate DNA baculoviruses activates the host DNA damage response (DDR), which promotes virus DNA replication. DDR signaling is initiated by the host insect's phosphatidylinositol-3 kinase-related kinases (PIKKs), including ataxia telangiectasia-mutated kinase (ATM). Like other PIKKs, ATM phosphorylates an array of host DDR proteins at serine/threonine glutamine (S/TQ) motifs, the result of which leads to cell cycle arrest, DNA repair, or apoptosis. To define the role of host PIKKs in baculovirus replication, we compared replication levels of the baculovirus prototype species Autographa californica multiple nucleopolyhedrovirus in permissive Spodoptera frugiperda (SF21) cells with and without ATM function. Caffeine, which inhibits multiple DDR kinases, and the ATM-specific inhibitors KU-55933 and KU-60019 each prevented phosphorylation of Spodoptera histone H2AX (SfH2AX), a recognized indicator of ATM activity. However, only caffeine reduced autographa californica multiple nucleopolyhedrovirus (AcMNPV)-induced bulk phosphorylation of S/TQ protein motifs. Furthermore, only caffeine, not KU-55933 or KU-60019, reduced AcMNPV yields, suggesting a limited role for ATM. To investigate further, we identified and edited the Spodoptera ATM gene (sfatm). Consistent with ATM's known functions, CRISPR/Cas9-mediated knockout of sfatm eliminated DNA damage-induced phosphorylation of DDR marker SfH2AX in SF21 cells. However, loss of sfatm failed to affect the levels of AcMNPV multiplication. These findings suggested that in the absence of the kinase SfATM, another caffeine-sensitive host DDR kinase promotes S/TQ phosphorylation and baculovirus multiplication. Thus, baculoviruses activate and utilize the host insect DDR in an ATM-independent manner. IMPORTANCE The DDR, while necessary for the maintenance and fidelity of the host genome, represents an important cellular response to viral infection. The prolific DNA baculoviruses activate and manipulate the invertebrate DDR by using mechanisms that positively impact virus multiplication, including virus DNA replication. As the key DDR initiator kinase, ATM was suspected to play a critical role in this host response. However, we show here that baculovirus AcMNPV activates an ATM-independent DDR. By identifying the insect host ATM ortholog (Spodoptera frugiperda SfATM) and evaluating genetic knockouts, we show that SfATM is dispensable for AcMNPV activation of the DDR and for virus replication. Thus, another PIKK, possibly the closely related kinase ATR (ATM- and Rad3-related kinase), is responsible for efficient baculovirus multiplication. These findings better define the host pathways used by invertebrates to engage viral pathogens, including DNA viruses.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Nucleopolyhedroviruses , Animals , Caffeine/pharmacology , Nucleopolyhedroviruses/physiology , Spodoptera/genetics , Spodoptera/virology , Virus Replication , Ataxia Telangiectasia Mutated Proteins/metabolism
5.
J Biol Chem ; 298(11): 102513, 2022 11.
Article in English | MEDLINE | ID: mdl-36150501

ABSTRACT

The human cytomegalovirus (HCMV) UL97 protein is a conserved herpesvirus protein kinase (CHPK) and a viral cyclin-dependent kinase (v-CDK). However, mechanisms regulating its activity in the context of infection are unknown. Here, we identified several cellular regulatory 14-3-3 proteins as UL97-interacting partners that promote UL97 stability. Humans are known to encode seven isoforms of 14-3-3 proteins (ß, ε, η, γ, σ, θ, and ζ) that bind phosphoserines or phosphothreonines to impact protein structure, stability, activity, and localization. Our proteomic analysis of UL97 identified 49 interacting partners, including 14-3-3 isoforms ß, η, and γ. Furthermore, coimmunoprecipitation with Western blotting assays demonstrated that UL97 interaction with 14-3-3 isoforms ß, ε, η, γ, and θ occurs in a kinase activity-dependent manner. Using mutational analysis, we determined the serine residue at amino acid 13 of UL97 is crucial for 14-3-3 interaction. We demonstrate UL97 S13A (serine to alanine substitution at residue 13) retains kinase activity but the mutant protein accumulated at lower levels than WT UL97. Finally, we show both laboratory (AD169) and clinical (TB40/E) strains of HCMV encoding UL97 S13A replicated with WT kinetics in fibroblasts but showed decreased UL97 accumulation. Taken together, we conclude that 14-3-3 proteins interact with and stabilize UL97 during HCMV infection.


Subject(s)
14-3-3 Proteins , Cytomegalovirus , Humans , Cytomegalovirus/physiology , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Serine/metabolism , Proteomics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
6.
Proc Natl Acad Sci U S A ; 119(14): e2122174119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344424

ABSTRACT

Replication-dependent (RD) histones are deposited onto human cytomegalovirus (HCMV) genomes at the start of infection. We examined how HCMV affects the de novo production of RD histones and found that viral infection blocked the accumulation of RD histone mRNAs that normally occurs during the S phase. Furthermore, RD histone mRNAs present in HCMV-infected cells did not undergo the unique 3' processing required for their normal nuclear export and translation. The protein that orchestrates processing in the nucleus, stem loop­binding protein (SLBP), was found predominantly in the cytoplasm, and RD histone proteins were not de novo synthesized in HCMV-infected cells. Intriguingly, however, we found that SLBP was required for the efficient synthesis and assembly of infectious progeny virions. We conclude that HCMV infection attenuates RD histone mRNA accumulation and processing and the de novo protein synthesis of the RD histones, while utilizing SLBP for an alternative purpose to support infectious virion production.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Histones , Virus Replication , Cell Division , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Cytomegalovirus Infections/virology , DNA Replication , Histones/metabolism , Humans
7.
mBio ; 12(6): e0226721, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34903048

ABSTRACT

The cGAS/STING/TBK1 (cyclic guanine monophosphate-AMP synthase/stimulator of interferon genes/Tank-binding kinase 1) innate immunity pathway is activated during human cytomegalovirus (HCMV) productive (lytic) replication in fully differentiated cells and during latency within incompletely differentiated myeloid cells. While multiple lytic-phase HCMV proteins neutralize steps along this pathway, none of them are expressed during latency. Here, we show that the latency-associated protein UL138 inhibits the cGAS/STING/TBK1 innate immunity pathway during transfections and infections, in fully differentiated cells and incompletely differentiated myeloid cells, and with loss of function and restoration of function approaches. UL138 inhibits the pathway downstream of STING but upstream of interferon regulatory factor 3 (IRF3) phosphorylation and NF-κB function and reduces the accumulation of interferon beta mRNA during both lytic and latent infections. IMPORTANCE While a cellular restriction versus viral countermeasure arms race between innate immunity and viral latency is expected, few examples have been documented. Our identification of the first HCMV latency protein that inactivates the cGAS/STING/TBK1 innate immune pathway opens the door to understanding how innate immunity, or its neutralization, impacts long-term persistence by HCMV and other latent viruses.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Interferon-beta , Membrane Proteins , Virus Latency , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Host-Pathogen Interactions , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Latent Infection/genetics , Latent Infection/immunology , Latent Infection/virology , Membrane Proteins/genetics , Membrane Proteins/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
8.
J Virol ; 95(18): e0111221, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34319158

ABSTRACT

Starting work in a virology research laboratory as a new technician, graduate student, or postdoc can be complex, intimidating, confusing, and stressful. From laboratory logistics to elemental expectations to scientific specifics, there is much to learn. To help new laboratory members adjust and excel, a series of guidelines for working and thriving in a virology laboratory is presented. While guidelines may be most helpful for new laboratory members, everyone, including principal investigators, is encouraged to use a set of published guidelines as a resource to maximize the time and efforts of all laboratory members. The topics covered here are safety, wellness, balance, teamwork, integrity, reading, research, writing, speaking, and timelines.


Subject(s)
Guidelines as Topic/standards , Laboratories/standards , Research Design/standards , Research Personnel/standards , Virology/standards , Humans
9.
J Virol ; 95(11)2021 05 10.
Article in English | MEDLINE | ID: mdl-33762415

ABSTRACT

Historically, men rather than women have been selected for invited speaking positions at the four prominent virology conference series we have followed since the 1980s. However, the low ratio of female representation in most earlier years (20%, 1982-2010) has shown encouraging improvement (37%, 2011-2017), particularly over the last few years (48% from 2018-2020). We describe this promising rise in inclusion and discuss factors that may help perpetuate and extend this overdue transformation towards gender parity.

10.
mBio ; 11(5)2020 09 29.
Article in English | MEDLINE | ID: mdl-32994332

ABSTRACT

The genomes of DNA tumor viruses regain nuclear localization after nuclear envelope breakdown during mitosis through the action of a viral protein with a chromatin-tethering domain (CTD). Here, we report that the human cytomegalovirus (HCMV) genome is maintained during mitosis by the CTD of the viral IE19 protein. Deletion of the IE19 CTD or disruption of the IE19 splice acceptor site reduced viral genome maintenance and progeny virion formation during infection of dividing fibroblasts, both of which were rescued by IE19 ectopic expression. The discovery of a viral genome maintenance factor during productive infection provides new insight into the mode of HCMV infection implicated in birth defects, organ transplant failure, and cancer.IMPORTANCE Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects, represents a serious complication for immunocompromised HIV/AIDS and organ transplant patients, and contributes to both immunosenescence and cardiovascular diseases. HCMV is also implicated in cancers such as glioblastoma multiforme (GBM) and infects ex vivo-cultured GBM tumor cells. In dividing tumor cells, the genomes of DNA tumor viruses regain nuclear localization after nuclear envelope breakdown during mitosis. This mitotic survival is mediated by a viral protein with a chromatin-tethering domain (CTD). Here, we report that the HCMV genome is maintained in dividing fibroblasts by the CTD of the viral IE19 protein. The discovery of a viral genome maintenance factor during productive infection could help explain viral genome dynamics within HCMV-positive tumors as well as during latency.


Subject(s)
Chromatin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Genome, Viral , Immediate-Early Proteins/genetics , Mitosis/genetics , Cell Line , Cells, Cultured , Chromatin/genetics , Fibroblasts/virology , HEK293 Cells , Host-Pathogen Interactions , Humans
11.
Article in English | MEDLINE | ID: mdl-32226778

ABSTRACT

The human cytomegalovirus pp71 protein is packaged within the tegument of infectious virions and performs multiple functions in host cells to prime them for productive, lytic replication. Here we review the known and hypothesized functions of pp71 in regulating proteolysis, infection outcome (lytic or latent), histone deposition, transcription, translation, immune evasion, cell cycle progression, and pathogenesis. We also highlight recent advances in CMV-based vaccine candidates informed by an improved understanding of pp71 function.


Subject(s)
Cytomegalovirus , Viral Proteins , Adaptor Proteins, Signal Transducing , Humans , Immune Evasion , Nuclear Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
12.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31391271

ABSTRACT

Human cytomegalovirus (HCMV) enters primary CD34+ hematopoietic progenitor cells by macropinocytosis, where it establishes latency in part because its tegument-transactivating protein, pp71, remains associated with endosomes and is therefore unable to initiate productive, lytic replication. Here we show that multiple HCMV strains also enter cell line models used to study latency by macropinocytosis and endocytosis. In all latency models tested, tegument-delivered pp71 was found to be colocalized with endosomal markers and was not associated with the seven other cytoplasmic localization markers tested. Like the capsid-associated pp150 tegument protein, we initially detected capsid proteins in association with endosomes but later detected them in the nucleus. Inhibitors of macropinocytosis and endocytosis reduced latent viral gene expression and precluded reactivation. Importantly, we utilized electron microscopy to observe entry by macropinocytosis and endocytosis, providing additional visual corroboration of the findings of our functional studies. Our demonstration that HCMV enters cell line models for latency in a manner indistinguishable from that of its entry into primary cells illustrates the utility of these cell lines for probing the mechanisms, host genetics, and small-molecule-mediated inhibition of HCMV entry into the cell types where it establishes latency.IMPORTANCE Primary cells cultured in vitro currently provide the highest available relevance for examining molecular and genetic requirements for the establishment, maintenance, and reactivation of HCMV latency. However, their expense, heterogeneity, and intransigence to both long-term culture and molecular or genetic modification create rigor and reproducibility challenges for HCMV latency studies. There are several cell line models for latency not obstructed by deficiencies inherent in primary cells. However, many researchers view cell line studies of latency to be physiologically irrelevant because of the perception that these models display numerous and significant differences from primary cells. Here, we show that the very first step in a latent HCMV infection, entry of the virus into cells, occurs in cell line models in a manner indistinguishable from that in which it occurs in primary CD34+ hematopoietic progenitor cells. Our data argue that experimental HCMV latency is much more similar than it is different in cell lines and primary cells.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Endocytosis , Hematopoietic Stem Cells/virology , Pinocytosis , Virus Internalization , Virus Latency , Biomimetics , Cell Nucleus/metabolism , Cytomegalovirus Infections/metabolism , Cytoplasm/metabolism , Hematopoietic Stem Cells/metabolism , Host-Pathogen Interactions , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Virus Res ; 270: 197646, 2019 09.
Article in English | MEDLINE | ID: mdl-31260705

ABSTRACT

Human cytomegalovirus (HCMV) establishes latency within incompletely differentiated cells of the myeloid lineage. The viral protein UL138 participates in establishing and maintaining this latent state. UL138 has multiple functions during latency that include silencing productive phase viral gene transcription and modulating intracellular protein trafficking. Trafficking and subsequent downregulation of the multidrug resistance-associated protein 1 (MRP1) by UL138 is mediated by one of four Golgi sorting motifs within UL138. Here we investigate whether any of the Golgi sorting motifs of UL138 are required for the establishment and/or maintenance of HCMV latency in model cell systems in vitro. We determined that a mutant UL138 protein lacking an acidic cluster dileucine sorting motif unable to downregulate MRP1, as well as another mutant lacking all four Golgi sorting motifs still silenced viral immediate early (IE) gene expression and prevented progeny virion formation during latency. We conclude that the Golgi sorting motifs are not required for latency establishment or maintenance in model cell systems in vitro.


Subject(s)
Cytomegalovirus/genetics , Golgi Apparatus , Protein Transport , Viral Proteins/genetics , Virus Latency/genetics , Amino Acid Motifs , Cytomegalovirus Infections/virology , Embryonic Stem Cells/virology , Genes, Immediate-Early , Humans , Multidrug Resistance-Associated Proteins/genetics , Mutation , THP-1 Cells
14.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31118259

ABSTRACT

Viral entry is targeted by immunological and pharmacological measures to inhibit viral infection. Human cytomegalovirus (HCMV) entry into cells where it initiates productive infection has been well studied, but its entry into cell types where it establishes latency has not. Therefore, we examined the entry of HCMV into CD34+ hematopoietic progenitor cells where the virus establishes latency. We determined that HCMV enters into the primary CD34+ hematopoietic progenitor cells in which it establishes latency by macropinocytosis. The capsid-associated tegument protein pp150 is released from maturing endosomes and migrates to the nucleus, whereas other tegument proteins, including pp71, remain endosome associated in the cytoplasm. The inhibition of macropinocytosis impairs entry, thereby diminishing latency-associated transcription and reducing viral reactivation. We conclude that HCMV virions enter CD34+ cells by macropinocytosis but fail to fully uncoat or disassemble their tegument layers, leading to the establishment of latency.IMPORTANCE Virion entry is targeted by antivirals and natural immunity to prevent infection. Natural preexisting immunity is ineffective at clearing an HCMV infection, and an incomplete understanding of the viral glycoproteins and cellular receptors that mediate entry has hampered inhibitor development. Nevertheless, HCMV entry remains a viable drug target. Our characterization here of HCMV entry into primary CD34+ hematopoietic progenitor cells through macropinocytosis and our comparison to viral entry into fibroblast cells highlight virion uncoating and tegument disassembly as a divergence point between productive and latent infections. Further definition of tegument disassembly may permit the development of interventions to inhibit this process to block productive infection or to trigger it in incompletely differentiated cells to prevent the seeding of the latent reservoirs that make HCMV infections incurable.


Subject(s)
Antigens, CD34/analysis , Cytomegalovirus/physiology , Hematopoietic Stem Cells/physiology , Hematopoietic Stem Cells/virology , Pinocytosis , Virus Internalization , Virus Latency , Cell Nucleus/virology , Endosomes/virology , Hematopoietic Stem Cells/chemistry , Humans , Protein Transport , Viral Structural Proteins/metabolism
15.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30894470

ABSTRACT

The human cytomegalovirus (HCMV) UL138 protein downregulates the cell surface expression of the multidrug resistance-associated protein 1 (MRP1) transporter. We examined the genetic requirements within UL138 for MRP1 downregulation. We determined that the acidic cluster dileucine motif is essential for UL138-mediated downregulation of MRP1 steady-state levels and inhibition of MRP1 efflux activity. We also discovered that the naturally occurring UL138 protein isoforms, the full-length long isoform of UL138 and a short isoform missing the N-terminal membrane-spanning domain, have different abilities to inhibit MRP1 function. Cells expressing the long isoform of UL138 show decreased MRP1 steady-state levels and fail to efflux an MRP1 substrate. Cells expressing the short isoform of UL138 also show decreased MRP1 levels, but the magnitude of the decrease is not the same, and they continue to efficiently efflux an MRP1 substrate. Thus, the membrane-spanning domain, while dispensable for a UL138-mediated decrease in MRP1 protein levels, is necessary for a functional inhibition of MRP1 activity. Our work defines the genetic requirements for UL138-mediated MRP1 downregulation and anticipates the possible evolution of viral escape mutants during the use of therapies targeting this function of UL138.IMPORTANCE HCMV UL138 curtails the activity of the MRP1 drug transporter by reducing its steady-state levels, leaving cells susceptible to killing by cytotoxic agents normally exported by MRP1. It has been suggested in the literature that capitalizing on this UL138-induced vulnerability could be a potential antiviral strategy against virally infected cells, particularly those harboring a latent infection during which UL138 is one of the few viral proteins expressed. Therefore, identifying the regions of UL138 required for MRP1 downregulation and predicting genetic variants that may be selected upon UL138-targeted chemotherapy are important ventures. Here we present the first structure-function examination of UL138 activity and determine that its transmembrane domain and acidic cluster dileucine Golgi sorting motif are required for functional MRP1 downregulation.


Subject(s)
Cytomegalovirus/metabolism , Membrane Glycoproteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Cell Line , Cytomegalovirus/physiology , Cytomegalovirus Infections/virology , Down-Regulation , Fibroblasts/metabolism , Humans , Membrane Glycoproteins/metabolism , Multidrug Resistance-Associated Proteins/physiology , Protein Isoforms/genetics , Viral Proteins/metabolism , Virus Latency/genetics
16.
PLoS Pathog ; 14(7): e1007179, 2018 07.
Article in English | MEDLINE | ID: mdl-30052684

ABSTRACT

Latent Epstein-Barr virus (EBV) infection contributes to both B-cell and epithelial-cell malignancies. However, whether lytic EBV infection also contributes to tumors is unclear, although the association between malaria infection and Burkitt lymphomas (BLs) may involve excessive lytic EBV replication. A particular variant of the viral promoter (Zp) that controls lytic EBV reactivation is over-represented, relative to its frequency in non-malignant tissue, in EBV-positive nasopharyngeal carcinomas and AIDS-related lymphomas. To date, no functional differences between the prototype Zp (Zp-P) and the cancer-associated variant (Zp-V3) have been identified. Here we show that a single nucleotide difference between the Zp-V3 and Zp-P promoters creates a binding site for the cellular transcription factor, NFATc1, in the Zp-V3 (but not Zp-P) variant, and greatly enhances Zp activity and lytic viral reactivation in response to NFATc1-inducing stimuli such as B-cell receptor activation and ionomycin. Furthermore, we demonstrate that restoring this NFATc1-motif to the Zp-P variant in the context of the intact EBV B95.8 strain genome greatly enhances lytic viral reactivation in response to the NFATc1-activating agent, ionomycin, and this effect is blocked by the NFAT inhibitory agent, cyclosporine, as well as NFATc1 siRNA. We also show that the Zp-V3 variant is over-represented in EBV-positive BLs and gastric cancers, and in EBV-transformed B-cell lines derived from EBV-infected breast milk of Kenyan mothers that had malaria during pregnancy. These results demonstrate that the Zp-V3 enhances EBV lytic reactivation to physiologically-relevant stimuli, and suggest that increased lytic infection may contribute to the increased prevalence of this variant in EBV-associated malignancies.


Subject(s)
Epstein-Barr Virus Infections/genetics , Trans-Activators/genetics , Virus Activation/genetics , Genetic Variation/genetics , Herpesvirus 4, Human/genetics , Humans , Promoter Regions, Genetic/genetics
17.
J Virol ; 92(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29848590

ABSTRACT

Human cytomegalovirus (HCMV) productive replication in vitro is most often studied in fibroblasts. In vivo, fibroblasts amplify viral titers, but transmission and pathogenesis require the infection of other cell types, most notably epithelial cells. In vitro, the study of HCMV infection of epithelial cells has been almost exclusively restricted to ocular epithelial cells. Here we present oral epithelial cells with relevance for viral interhost transmission as an in vitro model system to study HCMV infection. We discovered that HCMV productively replicates in normal oral keratinocytes (NOKs) and telomerase-immortalized gingival cells (hGETs). Our work introduces oral epithelial cells for the study of HCMV productive infection, drug screening, and vaccine development.IMPORTANCE The ocular epithelial cells currently used to study HCMV infections in vitro have historical significance based upon their role in retinitis, an HCMV disease most often seen in AIDS patients. However, with the successful implementation of highly active antiretroviral therapy (HAART) regimens, the incidence of HCMV retinitis has rapidly declined, and therefore, the relevance of studying ocular epithelial cell HCMV infection has decreased as well. Our introduction here of oral epithelial cells provides two alternative in vitro models for the study of HCMV infection that complement and extend the physiologic relevance of the ocular system currently in use.


Subject(s)
Cytomegalovirus/physiology , Epithelial Cells/virology , Virus Replication , Cells, Cultured , Humans
18.
Dev Cell ; 45(1): 1-2, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29634930

ABSTRACT

Microtubules are normally organized at centrosomes, but other sites can also serve as microtubule organizing centers (MTOCs). In this issue of Developmental Cell, Procter et al. (2018) show that the human cytomegalovirus virion assembly compartment acts as a dynamic Golgi-derived MTOC where EB3 nucleates microtubules and regulates infectious virion production.


Subject(s)
Microtubule-Organizing Center , Microtubules , Centrosome , Golgi Apparatus , Humans
19.
ACS Chem Biol ; 13(1): 189-199, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29215867

ABSTRACT

Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.


Subject(s)
Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , Viral Proteins/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinases/genetics , Cytomegalovirus/enzymology , Herpesvirus 4, Human/enzymology , Nucleosomes/metabolism , Protein Engineering/methods , RNA Splicing , Substrate Specificity , Viral Proteins/chemistry
20.
Virology ; 512: 95-103, 2017 12.
Article in English | MEDLINE | ID: mdl-28946006

ABSTRACT

Human cytomegalovirus (HCMV) encodes a viral cyclin-dependent kinase (v-CDK), the UL97 protein. UL97 phosphorylates Rb, p107 and p130, thereby inactivating all three retinoblastoma (Rb) family members. Rb proteins function through regulating the activity of transcription factors to which they bind. Therefore, we examined whether the UL97-mediated regulation of the Rb tumor suppressors also extended to their binding partners. We observed that UL97 phosphorylates LIN52, a component of p107- and p130-assembled transcriptionally repressive DREAM complexes that control transcription during the G0/G1 phases, and the Rb-associated E2F3 protein that activates transcription through G1 and S phases. Intriguingly, we also identified FoxM1B, a transcriptional regulator during the S and G2 phases, as a UL97 substrate. This survey extends the influence of UL97 beyond simply the Rb proteins themselves to their binding partners, as well as past the G1/S transition into later stages of the cell cycle.


Subject(s)
Cytomegalovirus/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Retinoblastoma Protein/metabolism , Cells, Cultured , Cyclins/genetics , Cyclins/metabolism , Cytomegalovirus/metabolism , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , G1 Phase , Gene Expression Regulation, Viral/physiology , Humans , Kv Channel-Interacting Proteins/genetics , Kv Channel-Interacting Proteins/metabolism , Mutagenesis, Site-Directed , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Subunits , Repressor Proteins/genetics , Repressor Proteins/metabolism , Resting Phase, Cell Cycle , Retinoblastoma Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL