Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
ACS Chem Biol ; 19(5): 1066-1081, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38630468

ABSTRACT

Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored.


Subject(s)
Drug Design , Enzyme Inhibitors , Ornithine-Oxo-Acid Transaminase , Humans , Ornithine-Oxo-Acid Transaminase/metabolism , Ornithine-Oxo-Acid Transaminase/chemistry , Ornithine-Oxo-Acid Transaminase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Carboxylic Acids/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Cyclohexenes/chemistry , Cyclohexenes/chemical synthesis , Cyclohexenes/pharmacology , Cyclohexenes/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Crystallography, X-Ray , Models, Molecular
3.
J Inorg Biochem ; 256: 112565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677005

ABSTRACT

Two conserved second-sphere ßArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase ßR52A, ßR52K, ßR157A, ßR157K and ReNHase ßR61A) were successfully expressed and purified. Apart from the PtNHase ßR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase ßR mutant enzymes were between 1.8 and 12.4 s-1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase ßR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere ßR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.


Subject(s)
Arginine , Hydro-Lyases , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Arginine/chemistry , Rhodococcus equi/enzymology , Rhodococcus equi/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Actinomycetales/enzymology , Actinomycetales/genetics , Catalytic Domain
4.
Arch Biochem Biophys ; 736: 109517, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36681231

ABSTRACT

Dihydropyrimidine dehydrogenase (DPD) is a flavin dependent enzyme that catalyzes the reduction of the 5,6-vinylic bond of pyrimidines uracil and thymine with electrons from NADPH. DPD has two active sites that are separated by ∼60 Å. At one site NADPH binds adjacent to an FAD cofactor and at the other pyrimidine binds proximal to an FMN. Four Fe4S4 centers span the distance between these active sites. It has recently been established that the enzyme undergoes reductive activation prior to reducing the pyrimidine. In this initial process NADPH is oxidized at the FAD site and electrons are transmitted to the FMN via the Fe4S4 centers to yield the active state with a cofactor set of FAD•4(Fe4S4)•FMNH2. The catalytic chemistry of DPD can be studied in transient-state by observation of either NADPH consumption or charge transfer absorption associated with complexation of NADPH adjacent to the FAD. Here we have utilized both sets of absorption transitions to find evidence for specific additional aspects of the DPD mechanism. Competition for binding with NADP+ indicates that the two charge transfer species observed in activation/single turnover reactions arise from NADPH populating the FAD site before and after reductive activation. An additional charge transfer species is observed to accumulate at longer times when high NADPH concentrations are mixed with the enzyme•pyrimidine complex and this data can be modelled based on asymmetry in the homodimer. It was also shown that, like pyrimidines, dihydropyrimidines induce rapid reductive activation indicating that the reduced pyrimidine formed in turnover can stimulate the reinstatement of the active state of the enzyme. Investigation of the reverse reaction revealed that dihydropyrimidines alone can reductively activate the enzyme, albeit inefficiently. In the presence of dihydropyrimidine and NADP+ DPD will form NADPH but apparently without measurable reductive activation. Pyrimidines that have 5-substituent halogens were utilized to probe both reductive activation and turnover. The linearity of the Hammett plot based on the rate of hydride transfer to the pyrimidine establishes that, at least to the radius of an iodo-group, the 5-substituent volume does not have influence on the observed kinetics of pyrimidine reduction.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Pyrimidines , Animals , Oxidation-Reduction , Dihydrouracil Dehydrogenase (NADP)/chemistry , NADP/metabolism , Spectrophotometry , Pyrimidines/metabolism , Kinetics , Flavin-Adenine Dinucleotide/chemistry , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL