Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 727: 109350, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35830943

ABSTRACT

Proteins possess a variety of nucleophiles, which can carry out different reactions in the functioning cells. Proteins endogenously and synthetically can be modified through their nucleophilic sites. The roles of these chemical modifications have not been completely revealed. These modifications can alter the protein folding process. Protein folding directly affects the function of proteins. If an error in protein folding occurs, it may cause protein malfunction leading to several neurodegenerative disorders such as Alzheimer's and Parkinson's. In this study, Hen Egg White Lysozyme (HEWL) and bovine insulin, as model proteins for studying the amyloid formation, were covalently attached with 5(6)-thiophenolfluorescein. The amyloid formation of the covalently labeled lysozyme and insulin were compared with the native proteins. Interestingly, the results indicated that the covalent attachment of fluorescein slowed down the amyloid formation of HEWL and insulin significantly. The amyloid formation was examined using Thioflavin T (ThT) fluorescence assay, circular dichroism, FTIR, and gel electrophoresis. Tandem mass spectrometry was employed to identify the sites of covalent modifications in HEWL. It turned out that two surface lysine residues (K97 and K 116) in HEWL were modified. Computational studies, including docking and molecular simulations, revealed that 5(6)-thiophenolfluorescein makes several non-covalent interactions with HEWL residues, including Lys 97, leading to the reduction of the ß-sheet in the protein. Additionally, AFM analysis confirmed the amyloid fibril reduction of lysine-modified bovine insulin and HEWL. Altogether, our results expand mechanistic insights into preventing amyloid formation by providing an approach for reducing amyloid formation by modifying specific lysine residues in the proteins.


Subject(s)
Amyloid , Lysine , Muramidase , Amyloid/chemistry , Animals , Cattle , Chickens/metabolism , Circular Dichroism , Insulin , Muramidase/chemistry
2.
J Chem Inf Model ; 61(8): 4045-4057, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34292735

ABSTRACT

The release of anticoagulant drugs such as warfarin from human serum albumin (HSA) has been important not only mechanistically but also clinically for patients who take multiple drugs simultaneously. In this study, the role of some commonly used drugs, including s-ibuprofen, ascorbic acid, and salicylic acid, was investigated in the release of warfarin bound to HSA in silico. The effects of the aforementioned drugs on the HSA-warfarin complex were investigated with molecular dynamics (MD) simulations using two approaches; in the first perspective, molecular docking was used to model the interaction of each drug with the HSA-warfarin complex, and in the second approach, drugs were positioned randomly and distant from the binary complex (HSA-warfarin) in a physiologically relevant concentration. The results obtained from both approaches indicated that s-ibuprofen and ascorbic acid both displayed allosteric effects on the release of warfarin from HSA. Although ascorbic acid aided in warfarin release, leading to destabilization of HSA, ibuprofen demonstrated a stabilizing effect on releasing the anticoagulant drug through several noncovalent interactions, including hydrophobic, electrostatic, and hydrogen-bonding interactions with the protein. The calculated binding free energy and energy contribution of involved residues using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method, along with root mean square deviation (RMSD) values, protein gyration, and free energy surface (FES) mapping of the protein, provided valuable details on the nature of the interactions of each drug on the release of warfarin from HSA. These results can provide important information on the mechanisms of anticoagulant release that has not been revealed in molecular details previously.


Subject(s)
Ibuprofen , Warfarin , Anticoagulants/pharmacology , Binding Sites , Humans , Molecular Docking Simulation , Protein Binding , Salicylates , Serum Albumin/metabolism , Serum Albumin, Human
3.
Chem Res Toxicol ; 31(10): 1092-1104, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30141332

ABSTRACT

Conformational diseases, constituting a large number of diseases, have been connected with protein misfolding, leading to aggregation known as amyloid fibrils. Mainly due to the lack of detailed molecular mechanisms, there has not been an effective drug to combat amyloid-associated diseases. Recently, a small organic pyridazine-based molecule (RS-0406) has shown significant reductions in amyloid fibrils in both in vitro and in vivo animal studies. However, no information on molecular details of inhibition for the small molecule has been reported. In this work, we have decided to explore structure-activity relationship of pyridazine-based compounds to investigate structural parameters for amyloid inhibition. A number of closely related derivatives of RS-0406 were designed and synthesized to delineate the roles of structural properties, including bulkiness and halogen bonding, hydrogen-bonding ability, and the position of substituents on the flanking aromatic rings of the synthetic molecules. To examine the effectiveness of the synthesized compounds, amyloid fibril formation of hen egg white lysozyme was measured in the presence of each synthetic molecule. Our results indicated that in addition to the type of the aryl substituent, their positions on the ring were also important for their inhibitory roles in amyloid fibrils formation. Moreover, a fluorinated compound turned out to be a more effective kinetic inhibitor, displaying a delayed fibril nucleation than the original lead compound. Furthermore, biochemical structural analyses and molecular dynamics simulation revealed that the pyridazine-based compounds may mediate the inhibition of amyloid fibrils through stabilization of the protein monomer during partially unfolded state. The cytotoxicity assay revealed that the amounts of amyloid intermediates were reduced in the presence of the synthetic compounds. Eventually, IC50 values were obtained for the synthetic compounds, and quantitative structure-activity relationship method was employed to suggest more effective amyloid inhibitors.


Subject(s)
Amyloid beta-Peptides/metabolism , Pyridazines/chemistry , Amino Acid Sequence , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/toxicity , Animals , Binding Sites , Cell Survival/drug effects , Hydrogen-Ion Concentration , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Muramidase/chemistry , Muramidase/metabolism , PC12 Cells , Protein Structure, Secondary , Pyridazines/chemical synthesis , Pyridazines/metabolism , Quantitative Structure-Activity Relationship , Rats , Temperature
4.
Enzyme Microb Technol ; 111: 12-20, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29421032

ABSTRACT

Keratinocyte Growth Factor (KGF) is a paracrine-acting, epithelial mitogen that plays a prominent role in the regeneration of damaged epithelial tissues. In spite of different attempts to produce recombinant human KGF in many organisms, including bacteria, mammalian cells, plant cells and insect cells; production of recombinant form suffers from lower yields and recovery relative to other recombinant proteins of similar size and properties. Due to many advantages of Pichia pastoris expression systems for producing industrial enzymes and pharmaceutical proteins, in this study P. pastoris was chosen as a host for KGF expression. For preparing human KGF coding sequence, MCF-7 cell line was treated with 1,25-Dihydroxy vitamin D3 for inducing the expression of KGF. The coding sequence of 23N-terminal truncated KGF form was amplified using RT-PCR technique and then cloned into the yeast expression vector in frame with the yeast α-factor secretion signal. The recombinant plasmid was integrated into Pichia pastoris strain X-33 genome. Western blotting and Mass Spectrometry demonstrated that recombinant human KGF (rhKGF) was correctly expressed after methanol induction and secreted into the media. The recombinant protein was purified from the media by heparin affinity chromatography. MTT assay showed that the purified rhKGF had a proliferative effect on NIH3T3 and A549 cell lines. In addition, protective effect of recombinant KGF was assessed in A549 cell line after irradiation. The results showed that the recombinant protein was biologically active. Finally, the effect of recombinant KGF was investigated on proliferation of MCF-7 cell line and its response to radiation. The results showed that pre-treatment of KGF have a protective effect on MCF-7 cell line after irradiation.


Subject(s)
Fibroblast Growth Factor 7/biosynthesis , Fibroblast Growth Factor 7/genetics , Pichia/genetics , Pichia/metabolism , Radiation-Protective Agents/pharmacology , A549 Cells , Animals , Cell Proliferation/drug effects , Cloning, Molecular , Fibroblast Growth Factor 7/pharmacology , Humans , MCF-7 Cells , Mice , NIH 3T3 Cells , Radiation Tolerance/drug effects , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
5.
Electrophoresis ; 39(3): 445-455, 2018 02.
Article in English | MEDLINE | ID: mdl-28944476

ABSTRACT

In recent years, applications of dielectrophoresis-based platforms have been recognized as effective and dependable approach to separate cells and bioparticles, suspended in different carrier fluids, based on particle size and electrical properties. In this study, a microfluidic device was fabricated by an unprecedented electrode pattern, and several experiments were performed to enrich samples including either of yeast, Escherichia coli, or latex particles. A chemical deposition-based method was employed for fabrication of microelectrodes, inducing nonuniform electric field required for dielectrophoresis-based separation. One major advantage of our employed method is low fabrication cost, in addition to its accuracy and operation at low voltages. The performance of the microfluidic device in enriching either of injected samples was studied using spectrophotometric techniques. The effects of experimentally controllable parameters (applied-voltage amplitude and frequency, and flow rate) were studied by changing a parameter while keeping the others constant. It became evident that all the aforementioned parameters had modulating impact on the performance of the microfluidic device. Furthermore, to investigate binary interactions among the parameters, response surface methodology was exploited, resulting in a second-order polynomial model for the performance of the device as a function of the parameters. The model was employed for finding the optimum values of the parameters at which the performance of the device is the highest. At optimum values for the experimentally controllable parameters, enrichment efficiencies of 87 ± 2, 82 ± 4, and 86 ± 3% for, respectively, yeast, E. coli, and latex particles were obtained experimentally, confirming the ability of the proposed method for biological and polymeric particles enrichment.


Subject(s)
Cell Separation/instrumentation , Electrophoresis/instrumentation , Lab-On-A-Chip Devices , Electric Conductivity , Electrodes , Electromagnetic Fields , Equipment Design/instrumentation , Escherichia coli/cytology , Escherichia coli/isolation & purification , Microspheres , Particle Size , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/isolation & purification
6.
Adv Pharm Bull ; 6(1): 49-56, 2016 03.
Article in English | MEDLINE | ID: mdl-27123417

ABSTRACT

PURPOSE: Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer's disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. METHODS: pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. RESULTS: Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. CONCLUSION: Human TG2 was expressed efficiently in the active biological form in the Bac-to-Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system.

7.
Protein Expr Purif ; 121: 157-62, 2016 May.
Article in English | MEDLINE | ID: mdl-26826316

ABSTRACT

ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel ß-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein.


Subject(s)
Apolipoproteins D/biosynthesis , Pichia/genetics , Recombinant Proteins/biosynthesis , Apolipoproteins D/genetics , Gene Expression , Humans , Ligands , Recombinant Proteins/genetics
8.
Cell J ; 16(4): 494-505, 2015.
Article in English | MEDLINE | ID: mdl-25685740

ABSTRACT

OBJECTIVE: MiR-302-367 is a cluster of polycistronic microRNAs that are exclusively expressed in embryonic stem (ES) cells. The miR-302-367 promoter is functional during embryonic development but is turned off in later stages. Motivated by the cancer stem cell hypothesis, we explored the potential expression of miR-302 in brain tumor cell lines. MATERIALS AND METHODS: In the present experimental study, we have tried to expand our knowledge on the expression pattern and functionality of miR302 cluster by quantifying its expression in a series of glioma (A-172, 1321N1, U87MG) and medulloblastoma (DAOY) cell lines. To further assess the functionality of miR-302 in these cell lines, we cloned its promoter core region upstream of the enhanced green fluorescent protein (EGFP) or luciferase encoding genes. RESULTS: Our data demonstrated a very low expression of miR-302 in glioma cell lines, compared with that of embryonal carcinoma cell line NT2 being used as a positive control. The expression of miR-302 promoter-EGFP construct in the aforementioned cell lines demonstrated GFP expression in a rare subpopulation of the cells. Serum deprivation led to the generation of tumorospheres, enrichment of miR-302 positive cells and upregulation of a number of pluripotency genes. CONCLUSION: Taken together, our data suggest that miR-302 could potentially be used as a novel putative cancer stem cell marker to identify and target cancer stem cells within tumor tissues.

9.
Biotechnol Lett ; 35(8): 1191-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23553521

ABSTRACT

Hepcidin is a peptide hormone that plays an important role in iron metabolism. We have produced a recombinant mouse hepcidin-1 by using baculovirus expression system. Its expression yield was 25 µg/ml when cell culture media were supplemented with a protease inhibitor cocktail. The recombinant mouse hepcidin-1 and synthetic human hepcidin-25 had similar effects on reducing ferroportin expression in J774A cell line and in peritoneal macrophages. However, synthetic human hepcidin-25 was more efficient than recombinant mouse hepcidin-1 in reducing iron concentration in blood circulation (p < 0.01).


Subject(s)
Cation Transport Proteins/biosynthesis , Hepcidins/metabolism , Iron/metabolism , Animals , Cell Line , Hepcidins/genetics , Iron/blood , Macrophages/drug effects , Macrophages/metabolism , Mice , Models, Animal , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
10.
Urol J ; 9(3): 574-80, 2012.
Article in English | MEDLINE | ID: mdl-22903480

ABSTRACT

PURPOSE: To investigate and compare the expression of OCT4B1 between tumor and non-tumor bladder tissues. MATERIALS AND METHODS: We investigated the expression of OCT4B1 in 30 tumor and non-tumor surgical specimens of the bladder, using the TaqMan real-time polymerase chain reaction approach and by carefully designing primers and probes specific for the amplification of the variant. RESULTS: Most tumor and non-tumor samples of the bladder showed OCT4B1 expression, but its expression level was significantly higher in the tumors (P < .002). Moreover, the up-regulation of OCT4B1 was more significant in high-grade tumors compared to the low-grade ones (P < .05). We have also employed the RNA interference strategy to evaluate the functional role of OCT4B1 in a bladder cancer cell line, 5637. Suppression of OCT4B1 caused some changes in cell cycle distribution, and significantly elevated the rate of apoptosis in the cells. CONCLUSION: Our findings suggest that OCT4B1 plays a potential role in tumor initiation and/or progression of the bladder cancer. Additionally, OCT4B1 can be regarded as a new tumor marker for detection, classification, and treatment of the bladder cancer. However, more experimental studies are needed to replicate our findings.


Subject(s)
Biomarkers, Tumor/metabolism , Octamer Transcription Factor-3/metabolism , Urinary Bladder Neoplasms/metabolism , Apoptosis , Cell Cycle , Cell Line, Tumor , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Male , Octamer Transcription Factor-3/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
11.
Biomacromolecules ; 10(9): 2468-75, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19678699

ABSTRACT

In searching for alternative ways to reduce or inhibit amyloid formation, we have studied this process using hen egg white lysozyme (HEWL) in the presence of a low concentration of protic ionic liquids. The ionic liquids were synthesized in a combinatorial fashion maintaining the cationic part (tetramethylguanidinium) with alteration of the anionic component of each compound tested. It was observed that one of these compounds (tetramethylguanidinium acetate) inhibited amyloid formation of HEWL in vitro by nearly 50%. Examination under transmission electron microscopy confirmed the fibril inhibition, and fibrils were observed to be morphologically thinner. To investigate the mechanism of inhibition, intrinsic fluorescence, ANS binding, and circular dichroism analyses were performed. These analyses indicated that the native structure of HEWL was maintained in the presence of the ionic liquid. Performing native PAGE and nondenaturing agarose electrophoresis, it became evident that some of the intermediate oligomers were not converted to protofibrils and that the oligomers were trapped in more stable conformations. Additionally, it was observed that this inhibitory effect was related to the ionic liquid itself and not the solvated ions. It also became evident that the carboxyl functional group was important in the inhibition. The size of the anions and kosmotropicity did not play significant roles in the fibril inhibition.


Subject(s)
Amyloid/antagonists & inhibitors , Ionic Liquids/pharmacology , Animals , Chickens , Female , Guanidine/pharmacology , Muramidase/antagonists & inhibitors , Protein Conformation/drug effects , Protein Multimerization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...