Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(46): e2303142, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37515520

ABSTRACT

Oxide glasses are an elementary group of materials in modern society, but brittleness limits their wider usability at room temperature. As an exception to the rule, amorphous aluminum oxide (a-Al2 O3 ) is a rare diatomic glassy material exhibiting significant nanoscale plasticity at room temperature. Here, it is shown experimentally that the room temperature plasticity of a-Al2 O3 extends to the microscale and high strain rates using in situ micropillar compression. All tested a-Al2 O3 micropillars deform without fracture at up to 50% strain via a combined mechanism of viscous creep and shear band slip propagation. Large-scale molecular dynamics simulations align with the main experimental observations and verify the plasticity mechanism at the atomic scale. The experimental strain rates reach magnitudes typical for impact loading scenarios, such as hammer forging, with strain rates up to the order of 1 000 s-1 , and the total a-Al2 O3 sample volume exhibiting significant low-temperature plasticity without fracture is expanded by 5 orders of magnitude from previous observations. The discovery is consistent with the theoretical prediction that the plasticity observed in a-Al2 O3 can extend to macroscopic bulk scale and suggests that amorphous oxides show significant potential to be used as light, high-strength, and damage-tolerant engineering materials.

2.
Science ; 366(6467): 864-869, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727833

ABSTRACT

Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.

3.
Nanoscale ; 8(42): 18212-18220, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27759127

ABSTRACT

We use an evolutionary algorithm to explore the design space of hexagonal Ge2Sb2Te5; a van der Waals layered two dimensional crystal heterostructure. The Ge2Sb2Te5 structure is more complicated than previously thought. Predominant features include layers of Ge3Sb2Te6 and Ge1Sb2Te4 two dimensional crystals that interact through Te-Te van der Waals bonds. Interestingly, (Ge/Sb)-Te-(Ge/Sb)-Te alternation is a common feature for the most stable structures of each generation's evolution. This emergent rule provides an important structural motif that must be included in the design of high performance Sb2Te3-GeTe van der Waals heterostructure superlattices with interfacial atomic switching capability. The structures predicted by the algorithm agree well with experimental measurements on highly oriented, and single crystal Ge2Sb2Te5 samples. By analysing the evolutionary algorithm optimised structures, we show that diffusive atomic switching is probable by Ge atoms undergoing a transition at the van der Waals interface from layers of Ge3Sb2Te6 to Ge1Sb2Te4 thus producing two blocks of Ge2Sb2Te5. Evolutionary methods present an efficient approach to explore the enormous multi-dimensional design parameter space of van der Waals bonded heterostructure superlattices.

4.
Nat Commun ; 7: 11983, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329563

ABSTRACT

Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3-GeTe van der Waals superlattice. The number of quintuple Sb2Te3 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb2Te3-GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways.

5.
Adv Mater ; 28(15): 3007-16, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26854333

ABSTRACT

Van der Waals heterostructure superlattices of Sb2 Te1 and GeTe are strain-engineered to promote switchable atomic disordering, which is confined to the GeTe layer. Careful control of the strain in the structures presents a new degree of freedom to design the properties of functional superlattice structures for data storage and photonics applications.

6.
Eur Biophys J ; 40(2): 181-94, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21072508

ABSTRACT

Retinol binding protein (RBP) and an engineered lipocalin, DigA16, have been studied using molecular dynamics simulations. Special emphasis has been placed on explaining the ligand-receptor interaction in RBP-retinol and DigA16-digoxigenin complexes, and steered molecular dynamics simulations of 10-20 ns have been carried out for the ligand expulsion process. Digoxigenin is bound deep inside the cavity of DigA16 and forms several stable hydrogen bonds in addition to the hydrophobic van der Waals interaction with the aromatic side-chains. Four crystalline water molecules inside the ligand-binding cavity remain trapped during the simulations. The strongly hydrophobic receptor site of RBP differs considerably from DigA16, and the main source of ligand attraction comes from the phenyl side-chains. The hydrogen bonds between digoxigenin and DigA16 cause the rupture forces on ligand removal in DigA16 and RBP to differ. The mutated DigA16 residues contribute approximately one-half of the digoxigenin interaction energy with DigA16 and, of these, the energetically most important are residues His35, Arg58, Ser87, Tyr88, and Phe114. Potential "sensor loops" were found for both receptors. These are the outlier loops between residues 114-121 and 63-67 for DigA16 and RBP, respectively, and they are located near the entrance of the ligand-binding cavity. Especially, the residues Glu119 (DigA16) and Leu64 (RBP) are critical for sensing. The ligand binding energies have been estimated based on the linear response approximation of binding affinity by using a previous parametrization for retinoids and RBP.


Subject(s)
Digoxigenin/metabolism , Lipocalins/metabolism , Molecular Dynamics Simulation , Retinol-Binding Proteins/metabolism , Binding Sites , Digoxigenin/chemistry , Hydrophobic and Hydrophilic Interactions , Ligands , Lipocalins/chemistry , Peptides/chemistry , Peptides/metabolism , Retinol-Binding Proteins/chemistry , Solvents/chemistry , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...