Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Exp Clin Cancer Res ; 42(1): 90, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072858

ABSTRACT

BACKGROUND: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS: As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS: A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION: Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.


Subject(s)
Copper , Neoplasms , Animals , Mice , Cell Differentiation/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Signal Transduction
2.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36560881

ABSTRACT

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Subject(s)
Auranofin , Genes, myc , Glutamine , Ovarian Neoplasms , Thioredoxin-Disulfide Reductase , Female , Humans , Auranofin/pharmacology , Auranofin/therapeutic use , Cell Line, Tumor , Genes, myc/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/genetics , Glutamine/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/antagonists & inhibitors , Thioredoxins/genetics , Thioredoxins/metabolism
3.
J Exp Clin Cancer Res ; 41(1): 355, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36539830

ABSTRACT

BACKGROUND: High-grade serous ovarian carcinomas (HGSCs) are a heterogeneous subtype of epithelial ovarian cancers and include serous cancers arising in the fallopian tube and peritoneum. These cancers are now subdivided into homologous recombination repair (HR)-deficient and proficient subgroups as this classification impacts on management and prognosis. PARP inhibitors (PARPi) have shown significant clinical efficacy, particularly as maintenance therapy following response to platinum-based chemotherapy in BRCA-mutant or homologous recombination (HR)-deficient HGSCs in both the 1st and 2nd line settings. However, PARPi have limited clinical benefit in HR-proficient HGSCs which make up almost 50% of HGSC and improving outcomes in these patients is now a high priority due to the poor prognosis with ineffectiveness of the current standard of care. There are a number of potential lines of investigation including efforts in sensitizing HR-proficient tumors to PARPi. Herein, we aimed to develop a novel combination therapy by targeting SSRP1 using a small molecule inhibitor CBL0137 with PARPi in HR-proficient HGSCs. EXPERIMENTAL DESIGN: We tested anti-cancer activity of CBL0137 monotherapy using a panel of HGSC cell lines and patient-derived tumor cells in vitro. RNA sequencing was used to map global transcriptomic changes in CBL0137-treated patient-derived HR-proficient HGSC cells. We tested efficacy of CBL0137 in combination with PARPi using HGSC cell lines and patient-derived tumor cells in vitro and in vivo. RESULTS: We show that SSRP1 inhibition using a small molecule, CBL0137, that traps SSRP1 onto chromatin, exerts a significant anti-growth activity in vitro against HGSC cell lines and patient-derived tumor cells, and also reduces tumor burden in vivo. CBL0137 induced DNA repair deficiency via inhibition of the HR repair pathway and sensitized SSRP1-high HR-proficient HGSC cell lines and patient-derived tumor cells/xenografts to the PARPi, Olaparib in vitro and in vivo. CBL0137 also enhanced the efficacy of DNA damaging platinum-based chemotherapy in HGSC patient-derived xenografts. CONCLUSION: Our findings strongly suggest that combination of CBL0137 and PARP inhibition represents a novel therapeutic strategy for HR-proficient HGSCs that express high levels of SSRP1 and should be investigated in the clinic.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Female , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Recombinational DNA Repair , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Cell Line, Tumor , DNA-Binding Proteins/genetics , High Mobility Group Proteins/metabolism , Transcriptional Elongation Factors/genetics
4.
Biol Res ; 54(1): 38, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903297

ABSTRACT

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator deferoxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Subject(s)
Cystic Fibrosis , Ferroptosis , Cell Death , Epithelial Cells , Humans , Lipid Peroxidation
5.
PLoS Genet ; 17(10): e1009334, 2021 10.
Article in English | MEDLINE | ID: mdl-34710087

ABSTRACT

Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3ß/ß-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3ß. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.


Subject(s)
Cell Cycle Proteins/metabolism , Neocortex/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Apoptosis/physiology , Carcinogenesis/metabolism , Cells, Cultured , Cytokinesis/physiology , Homozygote , Humans , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Phenotype
6.
Cancers (Basel) ; 13(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34359683

ABSTRACT

The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.

7.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071360

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.


Subject(s)
Benzothiazoles/pharmacology , DNA Damage , DNA Replication/drug effects , Naphthyridines/pharmacology , Quinuclidines/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , DNA Replication/genetics , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
8.
Biol. Res ; 54: 38-38, 2021. ilus, tab
Article in English | LILACS | ID: biblio-1505823

ABSTRACT

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator defer-oxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Subject(s)
Humans , Cystic Fibrosis , Ferroptosis , Lipid Peroxidation , Cell Death , Epithelial Cells
9.
Commun Biol ; 3(1): 593, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087841

ABSTRACT

High expression of centrosomal protein CEP55 has been correlated with clinico-pathological parameters across multiple human cancers. Despite significant in vitro studies and association of aberrantly overexpressed CEP55 with worse prognosis, its causal role in vivo tumorigenesis remains elusive. Here, using a ubiquitously overexpressing transgenic mouse model, we show that Cep55 overexpression causes spontaneous tumorigenesis and accelerates Trp53+/- induced tumours in vivo. At the cellular level, using mouse embryonic fibroblasts (MEFs), we demonstrate that Cep55 overexpression induces proliferation advantage by modulating multiple cellular signalling networks including the hyperactivation of the Pi3k/Akt pathway. Notably, Cep55 overexpressing MEFs have a compromised Chk1-dependent S-phase checkpoint, causing increased replication speed and DNA damage, resulting in a prolonged aberrant mitotic division. Importantly, this phenotype was rescued by pharmacological inhibition of Pi3k/Akt or expression of mutant Chk1 (S280A) protein, which is insensitive to regulation by active Akt, in Cep55 overexpressing MEFs. Moreover, we report that Cep55 overexpression causes stabilized microtubules. Collectively, our data demonstrates causative effects of deregulated Cep55 on genome stability and tumorigenesis which have potential implications for tumour initiation and therapy development.


Subject(s)
Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression , Genomic Instability , Animals , Biomarkers, Tumor , Biopsy , Cell Cycle Proteins/metabolism , Cell Line , Cell Transformation, Neoplastic/metabolism , Checkpoint Kinase 1/metabolism , Disease Susceptibility , Fibroblasts/metabolism , Genotype , Immunohistochemistry , Karyotype , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Mice, Transgenic , Microtubules/metabolism , Mitosis , Protein Stability , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stress, Physiological , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Theranostics ; 10(12): 5259-5275, 2020.
Article in English | MEDLINE | ID: mdl-32373211

ABSTRACT

Purpose: Lacking effective targeted therapies, triple-negative breast cancer (TNBCs) is highly aggressive and metastatic disease, and remains clinically challenging breast cancer subtype to treat. Despite the survival dependency on the proteasome pathway genes, FDA-approved proteasome inhibitors induced minimal clinical response in breast cancer patients due to weak proteasome inhibition. Hence, developing effective targeted therapy using potent proteasome inhibitor is required. Methods: We evaluated anti-cancer activity of a potent proteasome inhibitor, marizomib, in vitro using breast cancer lines and in vivo using 4T1.2 murine syngeneic model, MDA-MB-231 xenografts, and patient-derived tumor xenografts. Global proteome profiling, western blots, and RT-qPCR were used to investigate the mechanism of action for marizomib. Effect of marizomib on lung and brain metastasis was evaluated using syngeneic 4T1BR4 murine TNBC model in vivo. Results: We show that marizomib inhibits multiple proteasome catalytic activities and induces a better anti-tumor response in TNBC cell lines and patient-derived xenografts alone and in combination with the standard-of-care chemotherapy. Mechanistically, we show that marizomib is a dual inhibitor of proteasome and oxidative phosphorylation (OXPHOS) in TNBCs. Marizomib reduces lung and brain metastases by reducing the number of circulating tumor cells and the expression of genes involved in the epithelial-to-mesenchymal transition. We demonstrate that marizomib-induced OXPHOS inhibition upregulates glycolysis to meet the energetic demands of TNBC cells and combined inhibition of glycolysis with marizomib leads to a synergistic anti-cancer activity. Conclusions: Our data provide a strong rationale for a clinical evaluation of marizomib in primary and metastatic TNBC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Lactones/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Pyrroles/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mice , Oxidative Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
11.
Int J Cancer ; 146(1): 123-136, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31090219

ABSTRACT

Triple-negative breast cancer (TNBCs) is a very aggressive and lethal form of breast cancer with no effective targeted therapy. Neoadjuvant chemotherapies and radiotherapy remains a mainstay of treatment with only 25-30% of TNBC patients responding. Thus, there is an unmet clinical need to develop novel therapeutic strategies for TNBCs. TNBC cells have increased intracellular oxidative stress and suppressed glutathione, a major antioxidant system, but still, are protected against higher oxidative stress. We screened a panel of antioxidant genes using the TCGA and METABRIC databases and found that expression of the thioredoxin pathway genes is significantly upregulated in TNBC patients compared to non-TNBC patients and is correlated with adverse survival outcomes. Treatment with auranofin (AF), an FDA-approved thioredoxin reductase inhibitor caused specific cell death and impaired the growth of TNBC cells grown as spheroids. Furthermore, AF treatment exerted a significant in vivo antitumor activity in multiple TNBC models including the syngeneic 4T1.2 model, MDA-MB-231 xenograft and patient-derived tumor xenograft by inhibiting thioredoxin redox activity. We, for the first time, showed that AF increased CD8+Ve T-cell tumor infiltration in vivo and upregulated immune checkpoint PD-L1 expression in an ERK1/2-MYC-dependent manner. Moreover, combination of AF with anti-PD-L1 antibody synergistically impaired the growth of 4T1.2 primary tumors. Our data provide a novel therapeutic strategy using AF in combination with anti-PD-L1 antibody that warrants further clinical investigation for TNBC patients.


Subject(s)
Antibodies/therapeutic use , Auranofin/therapeutic use , B7-H1 Antigen/immunology , Enzyme Inhibitors/therapeutic use , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Auranofin/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
12.
Trends Mol Med ; 25(7): 595-611, 2019 07.
Article in English | MEDLINE | ID: mdl-31078431

ABSTRACT

Breast cancer is the most common cancer among women globally. Genomic instability (GI) refers to the increased tendency to accrue genomic alterations. It drives heterogeneity and is a hallmark of cancer. Genomic integrity is closely guarded by several mechanisms, including DNA damage checkpoints, the DNA repair machinery, and the mitotic checkpoint. Alterations in these surveillance mechanisms cause GI. In breast cancer, several pathways maintaining genomic integrity are distinctly altered, including some that have been successfully exploited for therapeutic targeting. In this review, we comprehensively discuss the recent advances on the mechanisms of GI in breast cancer, highlighting DNA repair defects and chromosome segregation errors during mitosis. We further review the clinical implications and therapeutic potential of targeting GI in the era of precision medicine.


Subject(s)
Breast Neoplasms/etiology , Genetic Predisposition to Disease , Genetic Variation , Genomic Instability , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Chromosomal Instability , DNA Damage , Disease Progression , Female , Genetic Association Studies , Humans , Molecular Targeted Therapy
13.
Oncogene ; 38(26): 5239-5249, 2019 06.
Article in English | MEDLINE | ID: mdl-30971760

ABSTRACT

Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.


Subject(s)
Breast Neoplasms/genetics , DNA Damage/genetics , Proto-Oncogene Proteins c-myb/physiology , Receptors, Estrogen/genetics , Recombinational DNA Repair/genetics , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Repair/genetics , Female , Humans , MCF-7 Cells , Rad51 Recombinase/genetics
14.
Trends Pharmacol Sci ; 40(3): 198-211, 2019 03.
Article in English | MEDLINE | ID: mdl-30736983

ABSTRACT

Breast cancer is one of the most common cancers affecting women. Despite significant improvements in overall survival, it remains a significant cause of death worldwide. Genomic instability (GI) is a hallmark of cancer and plays a pivotal role in breast cancer development and progression. In the past decade, high-throughput technologies have provided a wealth of information that has facilitated the identification of a diverse repertoire of mutated genes and mutational processes operative across cancers. Here, we review recent findings on genomic alterations and mutational processes in breast cancer pathogenesis. Most importantly, we summarize the clinical challenges and opportunities to utilize omics-based signatures for better management of breast cancer patients and treatment decision-making.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Female , Genomic Instability , Humans
15.
J Exp Clin Cancer Res ; 38(1): 85, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30777101

ABSTRACT

BACKGROUND: Despite the increasing progress in targeted and immune based-directed therapies for other solid organ malignancies, currently there is no targeted therapy available for TNBCs. A number of mechanisms have been reported both in pre-clinical and clinical settings that involve inherent, acquired and adaptive resistance to small molecule inhibitors. Here, we demonstrated a novel resistance mechanism in TNBC cells mediated by PDGFRß in response to JAK2 inhibition. METHODS: Multiple in vitro (subG1, western blotting, immunofluorescence, RT-PCR, Immunoprecipitation), in vivo and publically available datasets were used. RESULTS: We showed that TNBC cells exposed to MEK1/2-JAK2 inhibitors exhibit resistant colonies in anchorage-independent growth assays. Moreover, cells treated with various small molecule inhibitors including JAK2 promote PDGFRß upregulation. Using publically available databases, we showed that patients expressing high PDGFRß or its ligand PDGFB exhibit poor relapse-free survival upon chemotherapeutic treatment. Mechanistically we found that JAK2 expression controls steady state levels of PDGFRß. Thus, co-blockade of PDGFRß with JAK2 and MEK1/2 inhibitors completely eradicated resistant colonies in vitro. We found that triple-combined treatment had a significant impact on CD44+/CD24- stem-cell-like cells. Likewise, we found a significant tumor growth inhibition in vivo through intratumoral CD8+ T cells infiltration in a manner that is reversed by anti-CD8 antibody treatment. CONCLUSION: These findings reveal a novel regulatory role of JAK2-mediated PDGFRß proteolysis and provide an example of a PDGFRß-mediated resistance mechanism upon specific target inhibition in TNBC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Drug Resistance, Neoplasm/physiology , Janus Kinase 2/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/pathology , Female , Humans , Janus Kinase Inhibitors/pharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism
16.
EMBO Mol Med ; 10(9)2018 09.
Article in English | MEDLINE | ID: mdl-30108112

ABSTRACT

The centrosomal protein, CEP55, is a key regulator of cytokinesis, and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/cyclin B activation and CDK1 caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.


Subject(s)
Aneuploidy , Cell Cycle Proteins/metabolism , Cytokinesis , Mitosis , Nuclear Proteins/metabolism , Breast Neoplasms/pathology , CDC2 Protein Kinase/metabolism , Caspases/metabolism , Cell Cycle Proteins/genetics , Cell Death , Cell Line, Tumor , Cyclin B/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , Models, Biological , Nuclear Proteins/genetics
17.
FASEB J ; 32(9): 4984-4999, 2018 09.
Article in English | MEDLINE | ID: mdl-29683733

ABSTRACT

Spermatogenesis is a dynamic process involving self-renewal and differentiation of spermatogonial stem cells, meiosis, and ultimately, the differentiation of haploid spermatids into sperm. Centrosomal protein 55 kDa (CEP55) is necessary for somatic cell abscission during cytokinesis. It facilitates equal segregation of cytoplasmic contents between daughter cells by recruiting endosomal sorting complex required for transport machinery (ESCRT) at the midbody. In germ cells, CEP55, in partnership with testes expressed-14 (TEX14) protein, has also been shown to be an integral component of intercellular bridge before meiosis. Various in vitro studies have demonstrated a role for CEP55 in multiple cancers and other diseases. However, its oncogenic potential in vivo remains elusive. To investigate, we generated ubiquitously overexpressing Cep55 transgenic ( Cep55Tg/Tg) mice aiming to characterize its oncogenic role in cancer. Unexpectedly, we found that Cep55Tg/Tg male mice were sterile and had severe and progressive defects in spermatogenesis related to spermatogenic arrest and lack of spermatids in the testes. In this study, we characterized this male-specific phenotype and showed that excessively high levels of Cep55 results in hyperactivation of PI3K/protein kinase B (Akt) signaling in testis. In line with this finding, we observed increased phosphorylation of forkhead box protein O1 (FoxO1), and suppression of its nuclear retention, along with the relative enrichment of promyelocytic leukemia zinc finger (PLZF) -positive cells. Independently, we observed that Cep55 amplification favored upregulation of ret ( Ret) proto-oncogene and glial-derived neurotrophic factor family receptor α-1 ( Gfra1). Consistent with these data, we observed selective down-regulation of genes associated with germ cell differentiation in Cep55-overexpressing testes at postnatal day 10, including early growth response-4 ( Egr4) and spermatogenesis and oogenesis specific basic helix-loop-helix-1 ( Sohlh1). Thus, Cep55 amplification leads to a shift toward the initial maintenance of undifferentiated spermatogonia and ultimately results in progressive germ cell loss. Collectively, our findings demonstrate that Cep55 overexpression causes change in germ cell proportions and manifests as a Sertoli cell only tubule phenotype, similar to that seen in many azoospermic men.-Sinha, D., Kalimutho, M., Bowles, J., Chan, A.-L., Merriner, D. J., Bain, A. L., Simmons, J. L., Freire, R., Lopez, J. A., Hobbs, R. M., O'Bryan, M. K., Khanna, K. K. Cep55 overexpression causes male-specific sterility in mice by suppressing Foxo1 nuclear retention through sustained activation of PI3K/Akt signaling.


Subject(s)
Cell Cycle Proteins/metabolism , Forkhead Box Protein O1/metabolism , Infertility, Male/metabolism , Signal Transduction , Spermatogonia/metabolism , Animals , Male , Mice, 129 Strain , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sex Factors
18.
Mol Oncol ; 11(5): 470-490, 2017 05.
Article in English | MEDLINE | ID: mdl-28173629

ABSTRACT

Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti-EGFR-targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS-mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS-mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS-mutant HCT116 cells have an increase in MYC-mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation-induced DNA double-strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR-induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA-tagged wild-type (WT) MYC or phospho-mutant S62A increased RAD51 protein levels and hence IR-induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116-mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS-mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD-1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS-mutant-dependent cells drive HRR in vitro by upregulating MYC-RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.


Subject(s)
Colorectal Neoplasms/genetics , Homologous Recombination , Proto-Oncogene Proteins p21(ras)/genetics , Rad51 Recombinase/genetics , Saccharomyces cerevisiae/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , DNA Breaks, Double-Stranded , DNA Damage , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , ErbB Receptors/genetics , HCT116 Cells , Humans , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA, Small Interfering/genetics , Rad51 Recombinase/metabolism , Transcription Factors/genetics
19.
Sci Rep ; 7: 39873, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051153

ABSTRACT

In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Receptors, Retinoic Acid/metabolism , Bone Marrow Cells/cytology , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Neoplasm Metastasis/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/genetics
20.
Oncotarget ; 7(43): 70589-70600, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27661107

ABSTRACT

Serrated pathway colorectal cancers (CRCs) are characterised by a BRAF mutation and half display microsatellite instability (MSI). The Wnt pathway is commonly upregulated in conventional CRC through APC mutation. By contrast, serrated cancers do not mutate APC. We investigated mutation of the ubiquitin ligases RNF43 and ZNRF3 as alternate mechanism of altering the Wnt signal in serrated colorectal neoplasia. RNF43 was mutated in 47/54(87%) BRAF mutant/MSI and 8/33(24%) BRAF mutant/microsatellite stable cancers compared to only 3/79(4%) BRAF wildtype cancers (p<0.0001). ZNRF3 was mutated in 16/54(30%) BRAF mutant/MSI and 5/33(15%) BRAF mutant/microsatellite stable compared to 0/27 BRAF wild type cancers (p=0.004). An RNF43 frameshift mutation (X659fs) occurred in 80% BRAF mutant/MSI cancers. This high rate was verified in a second series of 25/35(71%) BRAF mutant/MSI cancers. RNF43 and ZNRF3 had lower transcript expression in BRAF mutant compared to BRAF wildtype cancers and less cytoplasmic protein expression in BRAF mutant/MSI compared to other subtypes. Treatment with a porcupine inhibitor reduced RNF43/ZNRF3 mutant colony growth by 50% and synergised with a MEK inhibitor to dramatically reduce growth. This study suggests inactivation of RNF43 and ZNRF3 is important in serrated tumorigenesis and has identified a potential therapeutic strategy for this cancer subtype.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , Mutation , Oncogene Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Aged , Carcinogenesis/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Male , Microsatellite Instability , Oncogene Proteins/metabolism , Proto-Oncogene Proteins B-raf/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...