Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Crit Care Med ; 25(3): 250-258, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38088760

ABSTRACT

OBJECTIVES: Children who suffer traumatic brain injury (TBI) are at high risk of morbidity and mortality. We hypothesized that in patients with TBI, the abusive head trauma (AHT) mechanism vs. accidental TBI (aTBI) would be associated with higher frequency of new functional impairment between baseline and later follow-up. DESIGN: Retrospective single center cohort study. SETTING AND PATIENTS: Children younger than 3 years old admitted with TBI to the PICU at a level 1 trauma center between 2014 and 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patient characteristics, TBI mechanism, and Functional Status Scale (FSS) scores at baseline, hospital discharge, short-term (median, 10 mo [interquartile range 3-12 mo]), and long-term (median, 4 yr [3-6 yr]) postdischarge were abstracted from the electronic health record. New impairment was defined as an increase in FSS greater than 1 from baseline. Patients who died were assigned the highest score (30). Multivariable logistic regression was performed to determine the association between TBI mechanism with new impairment. Over 6 years, there were 460 TBI children (170 AHT, 290 aTBI), of which 13 with AHT and four with aTBI died. Frequency of new impairment by follow-up interval, in AHT vs. aTBI patients, were as follows: hospital discharge (42/157 [27%] vs. 27/286 [9%]; p < 0.001), short-term (42/153 [27%] vs. 26/259 [10%]; p < 0.001), and long-term (32/114 [28%] vs. 18/178 [10%]; p < 0.001). Sensory, communication, and motor domains were worse in AHT patients at the short- and long-term timepoint. On multivariable analysis, AHT mechanism was associated with greater odds (odds ratio [95% CI]) of poor outcome (death and new impairment) at hospital discharge (4.4 [2.2-8.9]), short-term (2.7 [1.5-4.9]), and long-term timepoints (2.4 [1.2-4.8]; p < 0.05). CONCLUSIONS: In patients younger than 3 years old admitted to the PICU after TBI, the AHT mechanism-vs. aTBI-is associated with greater odds of poor outcome in the follow-up period through to ~5 years postdischarge. New impairment occurred in multiple domains and only AHT patients further declined in FSS over time.


Subject(s)
Brain Injuries, Traumatic , Child Abuse , Craniocerebral Trauma , Child , Humans , Infant , Child, Preschool , Retrospective Studies , Patient Discharge , Cohort Studies , Aftercare , Brain Injuries, Traumatic/complications , Hospitals , Intensive Care Units, Pediatric
2.
Neurocrit Care ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062303

ABSTRACT

BACKGROUND: Abusive head trauma (AHT) is a mechanism of pediatric traumatic brain injury (TBI) with high morbidity and mortality. Multiorgan dysfunction syndrome (MODS), defined as organ dysfunction in two or more organ systems, is also associated with morbidity and mortality in critically ill children. Our objective was to compare the frequency of MODS and evaluate its association with outcome between AHT and accidental TBI (aTBI). METHODS: This was a single center, retrospective cohort study including children under 3 years old admitted to the pediatric intensive care unit with nonpenetrating TBI between 2014 and 2021. Presence or absence of MODS on days 1, 3, and 7 using the Pediatric Logistic Organ Dysfunction-2 score and new impairment status (Functional Status Scale score change > 1 compared with preinjury) at hospital discharge (HD), short-term timepoint, and long-term timepoint were abstracted from the electronic health record. Multiple logistic regression was performed to examine the association between MODS and TBI mechanism with new impairment status. RESULTS: Among 576 children, 215 (37%) had AHT and 361 (63%) had aTBI. More children with AHT had MODS on days 1 (34% vs. 23%, p = 0.003), 3 (28% vs. 6%, p < 0.001), and 7 (17% vs. 3%, p < 0.001) compared with those with aTBI. The most common organ failures were cardiovascular ([AHT] 66% vs. [aTBI] 66%, p = 0.997), neurologic (33% vs. 16%, p < 0.001), and respiratory (34% vs. 15%, p < 0.001). MODS was associated with new impairment in multivariable logistic regression at HD (odds ratio 19.1 [95% confidence interval 9.8-38.6, p < 0.001]), short-term discharge (7.4 [3.7-15.2, p < 0.001]), and long-term discharge (4.3 [2.0-9.4, p < 0.001])]. AHT was also associated with new impairment at HD (3.4 [1.6-7.3, p = 0.001]), short-term discharge (2.5 [1.3-4.7, p = 0.005]), and long-term discharge (2.1 [1.1-4.1, p = 0.036]). CONCLUSIONS: Abusive head trauma as a mechanism was associated with MODS following TBI. Both AHT mechanism and MODS were associated with new impairment at all time points.

3.
J Pediatr Adolesc Gynecol ; 34(1): 74-76, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33096228

ABSTRACT

BACKGROUND: Hereditary hemochromatosis typically presents in adulthood with organ damage secondary to iron overload. In women, menstrual periods are a protective mechanism allowing for monthly loss of iron stores. CASE: We report the case of a female adolescent whose family history, clinical presentation, and laboratory investigation revealed a diagnosis of hereditary hemochromatosis and von Willebrand disease. For control of heavy menstrual bleeding, menstrual suppression was started with a subsequent increase of her ferritin levels. SUMMARY AND CONCLUSION: No significant data exist regarding the management of women with hereditary hemochromatosis who require menstrual suppression. This case highlights the difficulty in balancing the need for hormonal menstrual suppression with its effect on treatment choices, monitoring, and managing iron levels.


Subject(s)
Contraceptives, Oral, Hormonal/administration & dosage , Dysmenorrhea/drug therapy , Hemochromatosis/diagnosis , Menorrhagia/drug therapy , von Willebrand Diseases/diagnosis , Dysmenorrhea/etiology , Female , Ferritins/blood , Hemochromatosis/complications , Humans , Menorrhagia/etiology , Young Adult
4.
PLoS One ; 13(6): e0198013, 2018.
Article in English | MEDLINE | ID: mdl-29924795

ABSTRACT

Nephrin (Nphs1) is an adhesion protein that is expressed at the podocyte intercellular junction in the glomerulus. Nphs1 mutations in humans or deletion in animal genetic models results in a developmental failure of foot process formation. A number of studies have shown decrease in expression of nephrin in various proteinuric kidney diseases as well as in animal models of glomerular disease. Decrease in nephrin expression has been suggested to precede podocyte loss and linked to the progression of kidney disease. Whether the decrease in expression of nephrin is related to loss of podocytes or lead to podocyte detachment is unclear. To answer this central question we generated an inducible model of nephrin deletion (Nphs1Tam-Cre) in order to lower nephrin expression in healthy adult mice. Following tamoxifen-induction there was a 75% decrease in nephrin expression by 14 days. The Nphs1Tam-Cre mice had normal foot process ultrastructure and intact filtration barriers up to 4-6 weeks post-induction. Despite the loss of nephrin expression, the podocyte number and density remained unchanged during the initial period. Unexpectedly, nephrin expression, albeit at low levels persisted at the slit diaphragm up to 16-20 weeks post-tamoxifen induction. The mice became progressively proteinuric with glomerular hypertrophy and scarring reminiscent of focal and segmental glomerulosclerosis at 20 weeks. Four week-old Nphs1 knockout mice subjected to protamine sulfate model of podocyte injury demonstrated failure to recover from foot process effacement following heparin sulfate. Similarly, Nphs1 knockout mice failed to recover following nephrotoxic serum (NTS) with persistence of proteinuria and foot process effacement. Our results suggest that as in development, nephrin is necessary for maintenance of a healthy glomerular filter. In contrast to the developmental phenotype, lowering nephrin expression in a mature glomerulus resulted in a slowly progressive disease that histologically resembles FSGS a disease linked closely with podocyte depletion. Podocytes with low levels of nephrin expression are both susceptible and unable to recover following perturbation. Our results suggest that decreased nephrin expression independent of podocyte loss occurring as an early event in proteinuric kidney diseases might play a role in disease progression.


Subject(s)
Kidney Glomerulus/cytology , Kidney Glomerulus/injuries , Membrane Proteins/metabolism , Podocytes/metabolism , Animals , Cell Membrane/metabolism , Gene Deletion , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Podocytes/cytology , Protein Stability , Proteinuria/genetics
5.
PLoS One ; 11(2): e0148906, 2016.
Article in English | MEDLINE | ID: mdl-26848974

ABSTRACT

Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin ß1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.


Subject(s)
Integrins/metabolism , Membrane Proteins/metabolism , Tyrosine/metabolism , Animals , HEK293 Cells , Humans , Integrin beta1/analysis , Integrin beta1/metabolism , Membrane Proteins/analysis , Mice , Phosphorylation , Signal Transduction
6.
J Am Soc Nephrol ; 27(9): 2702-19, 2016 09.
Article in English | MEDLINE | ID: mdl-26825532

ABSTRACT

The mechanisms by which the glomerular filtration barrier prevents the loss of large macromolecules and simultaneously, maintains the filter remain poorly understood. Recent studies proposed that podocytes have an active role in both the endocytosis of filtered macromolecules and the maintenance of the filtration barrier. Deletion of a key endosomal trafficking regulator, the class 3 phosphatidylinositol (PtdIns) 3-kinase vacuolar protein sorting 34 (Vps34), in podocytes results in aberrant endosomal membrane morphology and podocyte dysfunction. We recently showed that the vacuolation phenotype in cultured Vps34-deficient podocytes is caused by the absence of a substrate for the Vps34 downstream effector PtdIns 3-phosphate 5-kinase (PIKfyve), which phosphorylates Vps34-generated PtdIns(3)P to produce PtdIns (3,5)P2. PIKfyve perturbation and PtdIns(3,5)P2 reduction result in massive membrane vacuolation along the endosomal system, but the cell-specific functions of PIKfyve in vivo remain unclear. We show here that the genetic deletion of PIKfyve in endocytically active proximal tubular cells resulted in the development of large cytoplasmic vacuoles caused by arrested endocytic traffic progression at a late-endosome stage. In contrast, deletion of PIKfyve in glomerular podocytes did not significantly alter the endosomal morphology, even in age 18-month-old mice. However, on culturing, the PIKfyve-deleted podocytes developed massive cytoplasmic vacuoles. In summary, these data suggest that glomerular podocytes and proximal tubules have different requirements for PIKfyve function, likely related to distinct in vivo needs for endocytic flux.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/physiology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/enzymology , Phosphatidylinositol 3-Kinases/physiology , Podocytes/enzymology , Animals , Endosomes , Kidney Glomerulus , Mice , Phosphatidylinositol 3-Kinases/genetics
7.
Mol Cell Biol ; 36(4): 596-614, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26644409

ABSTRACT

In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.


Subject(s)
Kidney/pathology , Membrane Proteins/metabolism , Nephritis/pathology , Podocytes/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Animals , Disease Models, Animal , Gene Deletion , Humans , Kidney/metabolism , Membrane Proteins/chemistry , Mice, Inbred C57BL , Molecular Sequence Data , Nephritis/chemically induced , Nephritis/metabolism , Phosphorylation , Podocytes/metabolism , Protamines , Protein Interaction Maps , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Tyrosine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...