Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364959

ABSTRACT

Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteinsincluding ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.

2.
Biotechnol J ; 19(1): e2300374, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37772688

ABSTRACT

Pancreatic islet cell transplantation (ICT) has emerged as an effective therapy for diabetic patients lacking endogenous insulin production. However, the islet graft function is compromised by a nonspecific inflammatory and thrombotic reaction known as the instant blood-meditated inflammatory reaction (IBMIR). Here, we report the characterization of four single-stranded DNA aptamers that bind specifically to TNFα - a pivotal cytokine that causes proinflammatory signaling during the IBMIR process - using single molecule binding analysis and functional assays as a means to assess the aptamers' ability to block TNFα activity and inhibiting the downstream proinflammatory gene expression in the islets. Our single-molecule fluorescence analyses of mono- and multivalent aptamers showed that they were able to bind effectively to TNFα with monoApt2 exhibiting the strongest binding (Kd  âˆ¼ 0.02 ± 0.01 nM), which is ∼3 orders of magnitude smaller than the Kd of the other aptamers. Furthermore, the in vitro cell viability analysis demonstrated an optimal and safe dosage of 100 µM for monoApt2 compared to 50 µM for monoApt1 and significant protection from proinflammatory cytokine-mediated cell death. More interestingly, monoApt2 reversed the upregulation of IBMIR mediating genes induced by TNFα in the human islets, and this was comparable to established TNFα antagonists. Both monoaptamers showed high specificity and selectivity for TNFα. Collectively, these findings suggest the potential use of aptamers as anti-inflammatory and localized immune-modulating agents for cellular transplant therapy.


Subject(s)
Islets of Langerhans Transplantation , Tumor Necrosis Factor-alpha , Humans , Cytokines , Inflammation/etiology , Inflammation/pathology , Insulin/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Life Sci ; 324: 121722, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37100379

ABSTRACT

Exosomes are 50-200 nm-sized extracellular vesicles that are secreted by cells to transfer signals and communicate with other cells. Recent research has revealed that allograft-specific exosomes containing proteins, lipids, and genetic materials are released into circulation post-transplantation which are powerful indicators of graft failure in solid-organ and tissue transplantations. The macromolecular content of exosomes released by the allograft and the immune cells serve as potential biomarkers for assessing the function and the acceptance/rejection status of the transplanted grafts. Identifying these biomarkers could aid in the development of therapeutic strategies to improve graft longevity. Exosomes can be used to deliver therapeutic agonists/antagonists to grafts and prevent rejection. Inducing long-term graft tolerance has been demonstrated in many studies using exosomes from immunomodulatory cells such as immature DCs, T regulatory cells, and MSCs. The use of graft-specific exosomes for targeted drug therapy has the potential to reduce the unwanted side effects of immunosuppressive drugs. Overall, in this review, we have explored the critical role of exosomes in the recognition and cross-presentation of donor organ-specific antigens during allograft rejection. Additionally, we have discussed the potential of exosomes as a biomarker for monitoring graft function and damage, as well as their potential therapeutic applications in mitigating allograft rejection.


Subject(s)
Exosomes , Exosomes/metabolism , Graft Rejection/prevention & control , Transplantation, Homologous , Allografts , Biomarkers/metabolism
4.
Cell Transplant ; 31: 9636897221086966, 2022.
Article in English | MEDLINE | ID: mdl-35343264

ABSTRACT

Islet culture before clinical transplantation has been adopted by various centers, but its effect on the survival and function of islets relative to the culture conditions and media needs further assessment. Human islets were cultured or preserved under four different conditions and three media options. Parameters such as recovery, viability, function, islet damage, and gene expressions for markers of hypoxia, and inflammation were assessed after 48-h culture or preservation. Preservation of islets was performed at 4°C in Connaught's Medical Research Lab (CMRL) and University of Wisconsin (UW) media. Islets were cultured at 22°C, 37°C, and 37°C-22°C in CMRL and PRODO culture media. Islets preserved in UW solution had visually good morphology and exhibited higher recovery with less islet damage compared with the rest of the groups, whereas islets preserved in CMRL at 4°C resulted in poor morphology, recovery, viability, and function compared with the rest of the treatment conditions. Culture at 22°C and 37°C demonstrated an increase in the expression of inflammatory and hypoxia-related genes. In conclusion, islets preserved at 4°C in UW solution showed the best overall outcomes after 48 h compared with islets cultured at 22°C, 37°C, or 37°C-22°C in PRODO. Advancement in islet culture media is warranted to reduce inflammatory gene activation and improve recovery of islets for transplantation.


Subject(s)
Islets of Langerhans , Organ Preservation Solutions , Adenosine , Allopurinol , Glutathione , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Raffinose
5.
Biomed Pharmacother ; 89: 323-331, 2017 May.
Article in English | MEDLINE | ID: mdl-28237914

ABSTRACT

High calorie diet promotes oxidative stress and chronic low grade inflammation that predispose to brain dysfunction and neurodegeneration. Hippocampus region of the brain has been shown to be particularly sensitive to high calorie diet. We hypothesize that apigenin (API), a flavonoid could attenuate hippocampal derangements induced by high fat-high fructose diet (HFFD). In this study, we investigated the effects of API on oxidative stress and inflammation in the hippocampus, and compared with those of sitagliptin (STG), a standard drug with neuroprotective properties. The markers of oxidative stress and inflammation were examined using biochemical assays, western blotting and immunohistochemistry techniques. HFFD-fed rats showed severe pathological alterations and API treatment rescued the hippocampus from the derangements. API significantly improved the antioxidant machinery, reduced ROS levels and prevented the activation of the stress kinases, inhibitor of kappa B kinase beta (IKKß) and c-Jun NH2 terminal kinase (JNK), and the nuclear translocation and activation of nuclear factor kappa B (NF-κB). The plasma levels of inflammatory cytokines were also reduced. Our findings suggest that hippocampal derangements triggered by HFFD feeding were effectively curtailed by API. Suppression of oxidative stress, NF-κB activation and JNK phosphorylation in the hippocampus are the mechanisms by which API offers neuroprotection in this model.


Subject(s)
Apigenin/pharmacology , Hippocampus/drug effects , Inflammation/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Biomarkers/metabolism , Diet, High-Fat/adverse effects , Flavonoids/pharmacology , Fructose/adverse effects , Hippocampus/metabolism , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance/physiology , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/drug effects , Liver/metabolism , Male , NF-kappa B/metabolism , Phosphorylation/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...