Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Neurosci ; 44(12)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38320853

ABSTRACT

Gonadotropin-releasing hormone (GnRH)-synthesizing neurons orchestrate reproduction centrally. Early studies have proposed the contribution of acetylcholine (ACh) to hypothalamic control of reproduction, although the causal mechanisms have not been clarified. Here, we report that in vivo pharmacogenetic activation of the cholinergic system increased the secretion of luteinizing hormone (LH) in orchidectomized mice. 3DISCO immunocytochemistry and electron microscopy revealed the innervation of GnRH neurons by cholinergic axons. Retrograde viral labeling initiated from GnRH-Cre neurons identified the medial septum and the diagonal band of Broca as exclusive sites of origin for cholinergic afferents of GnRH neurons. In acute brain slices, ACh and carbachol evoked a biphasic effect on the firing rate in GnRH neurons, first increasing and then diminishing it. In the presence of tetrodotoxin, carbachol induced an inward current, followed by a decline in the frequency of miniature postsynaptic currents (mPSCs), indicating a direct influence on GnRH cells. RT-PCR and whole-cell patch-clamp studies revealed that GnRH neurons expressed both nicotinic (α4ß2, α3ß4, and α7) and muscarinic (M1-M5) AChRs. The nicotinic AChRs contributed to the nicotine-elicited inward current and the rise in firing rate. Muscarine via M1 and M3 receptors increased, while via M2 and M4 reduced the frequency of both mPSCs and firing. Optogenetic activation of channelrhodopsin-2-tagged cholinergic axons modified GnRH neuronal activity and evoked cotransmission of ACh and GABA from a subpopulation of boutons. These findings confirm that the central cholinergic system regulates GnRH neurons and activates the pituitary-gonadal axis via ACh and ACh/GABA neurotransmissions in male mice.


Subject(s)
Acetylcholine , Gonadotropin-Releasing Hormone , Mice , Animals , Male , Acetylcholine/pharmacology , Carbachol/pharmacology , Neurons/physiology , Cholinergic Agents/pharmacology , Nicotine/pharmacology , Luteinizing Hormone , gamma-Aminobutyric Acid/pharmacology
2.
Brain Struct Funct ; 227(3): 1083-1098, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35029758

ABSTRACT

Orexin neurons are involved in homeostatic regulatory processes, including arousal and feeding, and provide a major input from the hypothalamus to the ventral tegmental area (VTA) of the midbrain. VTA neurons are a central hub processing reward and motivation and target the medial prefrontal cortex (mPFC) and the shell part of nucleus accumbens (NAcs). We investigated whether subpopulations of dopamine (DA) neurons in the VTA projecting either to the mPFC or the medial division of shell part of nucleus accumbens (mNAcs) receive differential input from orexin neurons and whether orexin exerts differential electrophysiological effects upon these cells. VTA neurons projecting to the mPFC or the mNAcs were traced retrogradely by Cav2-Cre virus and identified by expression of yellow fluorescent protein (YFP). Immunocytochemical analysis showed that a higher proportion of all orexin-innervated DA neurons projected to the mNAcs (34.5%) than to the mPFC (5.2%). Of all sampled VTA neurons projecting either to the mPFC or mNAcs, the dopaminergic (68.3 vs. 79.6%) and orexin-innervated DA neurons (68.9 vs. 64.4%) represented the major phenotype. Whole-cell current clamp recordings were obtained from fluorescently labeled neurons in slices during baseline periods and bath application of orexin A. Orexin similarly increased the firing rate of VTA dopamine neurons projecting to mNAcs (1.99 ± 0.61 Hz to 2.53 ± 0.72 Hz) and mPFC (0.40 ± 0.22 Hz to 1.45 ± 0.56 Hz). Thus, the hypothalamic orexin system targets mNAcs and to a lesser extent mPFC-projecting dopaminergic neurons of the VTA and exerts facilitatory effects on both clusters of dopamine neurons.


Subject(s)
Dopaminergic Neurons , Ventral Tegmental Area , Dopaminergic Neurons/metabolism , Nucleus Accumbens/metabolism , Orexins/metabolism , Prefrontal Cortex/physiology , Ventral Tegmental Area/metabolism
3.
Brain Struct Funct ; 226(7): 2387-2399, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34263407

ABSTRACT

The endocannabinoids have been shown to target the afferents of hypothalamic neurons via cannabinoid 1 receptor (CB1) and thereby to influence their excitability at various physiological and/or pathological processes. Kisspeptin (KP) neurons form afferents of multiple neuroendocrine cells and influence their activity via signaling through a variation of co-expressed classical neurotransmitters and neuropeptides. The differential potency of endocannabinoids to influence the release of classical transmitters or neuropeptides, and the ovarian cycle-dependent functioning of the endocannabinoid signaling in the gonadotropin-releasing hormone (GnRH) neurons initiated us to study whether (a) the different subpopulations of KP neurons express CB1 mRNAs, (b) the expression is influenced by estrogen, and (c) CB1-immunoreactivity is present in the KP afferents to GnRH neurons. The aim of the study was to investigate the site- and cell-specific expression of CB1 in female mice using multiple labeling in situ hybridization and immunofluorescent histochemical techniques. The results support that CB1 mRNAs are expressed by both the GABAergic and glutamatergic subpopulations of KP neurons, the receptor protein is detectable in two-thirds of the KP afferents to GnRH neurons, and the expression of CB1 mRNA shows an estrogen-dependency. The applied estrogen-treatment, known to induce proestrus, reduced the level of CB1 transcripts in the rostral periventricular area of the third ventricle and arcuate nucleus, and differently influenced its co-localization with vesicular GABA transporter or vesicular glutamate transporter-2 in KP neurons. This indicates a gonadal cycle-dependent role of endocannabinoid signaling in the neuronal circuits involving KP neurons.


Subject(s)
Neurons , Animals , Endocannabinoids , Estrogens , Female , Gonadotropin-Releasing Hormone/genetics , Kisspeptins/genetics , Mice , Receptors, Cannabinoid
4.
Neuroscience ; 451: 184-196, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33065232

ABSTRACT

KNDy neurons co-expressing kisspeptin (KP), neurokinin B (NKB) and dynorphin A (DYN A) in the arcuate nucleus of the hypothalamus (ARC) are key regulators of reproduction. Their activity is influenced by metabolic and hormonal signals. Previously, we have shown that orchidectomy alters the KP-, NKB-, and DYN A-immunoreactivity in the high-fat diet-induced (HFD) obesity and diabetes type 2 (DM2) models. Considering the potential sex difference in the response of KNDy neurons, we have hypothesized that ovariectomy (OVX) and post-ovariectomy replacement with estradiol (OVX+E2) or estradiol and progesterone (OVX+E2+P4) will also affect these neurons in HFD and DM2 females. Thus, each of these treatment protocols were employed for control, HFD, and DM2 groups of rats leading to nine experimental conditions within which we have determined the number of KP-, NKB-, or DYN-immunoreactive (-ir) neurons and assessed the metabolic and hormonal profiles of the animals. Accordingly: (1) no effects of group and surgery were observed on the number of KP-ir neurons; (2) the overall number of NKB-ir neurons was higher in the OVX+E2+P4 and OVX+E2 animals compared to OVX; (3) overall, the number of DYN A-ir neurons was higher in DM2 vs. control group, and surgery had an effect on the number of DYN A-ir neurons; (4) the metabolic and hormonal profiles were altered in HFD and DM2 animals compared to controls. Current data together with our previously published results indicate sex-specific differences in the response of KNDy neurons to DM2.


Subject(s)
Arcuate Nucleus of Hypothalamus , Diabetes Mellitus, Experimental , Dynorphins , Gonadal Steroid Hormones , Kisspeptins , Neurokinin B , Neurons , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Dynorphins/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Male , Neurokinin B/metabolism , Neurons/metabolism , Obesity , Ovariectomy , Rats
5.
Acta Physiol (Oxf) ; 228(2): e13345, 2020 02.
Article in English | MEDLINE | ID: mdl-31310704

ABSTRACT

AIM: Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS: Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS: Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION: Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.


Subject(s)
Eating/physiology , Hyperphagia/prevention & control , Hypothalamic Area, Lateral/drug effects , Leptin/pharmacology , Neurons/metabolism , Receptor, Galanin, Type 2/agonists , Animals , Disease Models, Animal , Eating/drug effects , Galanin/pharmacology , Ghrelin/metabolism , Hyperphagia/metabolism , Hyperphagia/pathology , Hypothalamic Area, Lateral/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Orexins/metabolism , Receptor, Galanin, Type 2/metabolism
6.
Article in English | MEDLINE | ID: mdl-31502966

ABSTRACT

Scanning acoustic microscopy (SAM) provides high-resolution images of biological tissues. Since higher transducer frequencies limit penetration depth, image resolution enhancement techniques could help in maintaining sufficient lateral resolution without sacrificing penetration depth. Compared with existing SAM research, this work introduces two novelties. First, deep learning (DL) is used to improve lateral resolution of 180-MHz SAM images, comparing it with two deconvolution-based approaches. Second, 316-MHz images are used as ground truth in order to quantitatively evaluate image resolution enhancement. The samples used were mouse and rat brain sections. The results demonstrate that DL can closely approximate ground truth (NRMSE = 0.056 and PSNR = 28.4 dB) even with a relatively limited training set (four images, each smaller than 1 mm ×1 mm). This study suggests the high potential of using DL as a single image superresolution method in SAM.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Microscopy, Acoustic/methods , Animals , Brain/diagnostic imaging , Mice , Rats
7.
Nat Metab ; 1(8): 811-829, 2019 08.
Article in English | MEDLINE | ID: mdl-31579887

ABSTRACT

Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.


Subject(s)
Adipose Tissue, Brown/metabolism , Dopamine/metabolism , Hypothalamus/metabolism , Signal Transduction , Thermogenesis/physiology , Animals , Bromocriptine/administration & dosage , Bromocriptine/pharmacology , Female , Humans , Hypothalamus/drug effects , Injections, Intraventricular , Male , Rats
8.
Diabetes ; 68(12): 2210-2222, 2019 12.
Article in English | MEDLINE | ID: mdl-31530579

ABSTRACT

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Subject(s)
Adiposity/drug effects , Forkhead Box Protein O1/metabolism , Glucose Intolerance/metabolism , Hyperphagia/metabolism , Hypothalamic Hormones/pharmacology , Melanins/pharmacology , Neurons/drug effects , Pituitary Hormones/pharmacology , Pro-Opiomelanocortin/metabolism , Sirtuin 1/metabolism , Adiposity/physiology , Animals , Forkhead Box Protein O1/genetics , Glucose Intolerance/genetics , Hyperphagia/genetics , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , Patch-Clamp Techniques , Rats, Sprague-Dawley , Sirtuin 1/genetics
9.
Neuroscience ; 405: 35-46, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29522854

ABSTRACT

Microglia are instrumental for recognition and elimination of amyloid ß1-42 oligomers (AßOs), but the long-term consequences of AßO-induced inflammatory changes in the brain are unclear. Here, we explored microglial responses and transciptome-level inflammatory signatures in the rat hippocampus after chronic AßO challenge. Middle-aged Long Evans rats received intracerebroventricular infusion of AßO or vehicle for 4 weeks, followed by treatment with artificial CSF or MCC950 for the subsequent 4 weeks. AßO infusion evoked a sustained inflammatory response including activation of NF-κB, triggered microglia activation and increased the expression of pattern recognition and phagocytic receptors. Aß1-42 plaques were not detectable likely due to microglial elimination of infused oligomers. In addition, we found upregulation of neuronal inhibitory ligands and their cognate microglial receptors, while downregulation of Esr1 and Scn1a, encoding estrogen receptor alpha and voltage-gated sodium-channel Na(v)1.1, respectively, was observed. These changes were associated with impaired hippocampus-dependent spatial memory and resembled early neurological changes seen in Alzheimer's disease. To investigate the role of inflammatory actions in memory deterioration, we performed MCC950 infusion, which specifically blocks the NLRP3 inflammasome. MCC950 attenuated AßO-evoked microglia reactivity, restored expression of neuronal inhibitory ligands, reversed downregulation of ERα, and abolished memory impairments. Furthermore, MCC950 abrogated AßO-invoked reduction of serum IL-10. These findings provide evidence that in response to AßO infusion microglia change their phenotype, but the resulting inflammatory changes are sustained for at least one month after the end of AßO challenge. Lasting NLRP3-driven inflammatory alterations and altered hippocampal gene expression contribute to spatial memory decline.


Subject(s)
Amyloid beta-Peptides/administration & dosage , Hippocampus/drug effects , Microglia/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Peptide Fragments/administration & dosage , Amyloid beta-Peptides/toxicity , Animals , Cell Communication/drug effects , Cytokines/blood , Cytokines/metabolism , Furans , Heterocyclic Compounds, 4 or More Rings , Hippocampus/metabolism , Hippocampus/pathology , Indenes , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Infusions, Intraventricular , Male , Maze Learning , Microglia/metabolism , Microglia/pathology , Models, Animal , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Peptide Fragments/toxicity , Rats , Rats, Long-Evans , Spatial Memory/drug effects , Sulfonamides , Sulfones
10.
Article in English | MEDLINE | ID: mdl-30524376

ABSTRACT

Gonadotropin releasing hormone (GnRH) neurons provide neuronal input to the preoptic area (POA) and the arcuate nucleus (Arc), two regions involved critically in the regulation of neuroendocrine functions and associated behaviors. These areas contain tyrosine hydroxylase immunoreactive (TH-IR) neurons, which play location-specific roles in the neuroendocrine control of both the luteinizing hormone and prolactin secretion, as well as, sexually motivated behaviors. Concerning changes in the activity of GnRH neurons and the secretion pattern of GnRH seen under the influence of rising serum estrogen levels and during lactation, we tested the hypothesis that the functional state of GnRH neurons is mediated via direct synaptic connections to TH-IR neurons in the POA and Arc. In addition, we examined putative changes of these inputs in lactating mice and in mothers separated from their pups. Confocal microscopic and pre-embedding immunohistochemical studies on ovariectomized mice treated with 17ß-estradiol (OVX+E2) provided evidence for direct appositions and asymmetric synapses between GnRH-IR fiber varicosities and TH-IR neurons in the POA and the Arc. As TH co-localizes with kisspeptin (KP) in the POA, confocal microscopic analysis was continued on sections additionally labeled for KP. The TH-IR neurons showed a lower level of co-labeling for KP in lactating mice compared to OVX+E2 mice (16.1 ± 5% vs. 57.8 ± 4.3%). Removing the pups for 24 h did not alter significantly the KP production in TH-IR neurons (17.3 ± 4.6%). The mean number of GnRH-IR varicosities on preoptic and arcuate TH cells did not differ in the three animal models investigated. This study shows evidence that GnRH neurons provide direct synaptic inputs to POA and Arc dopaminergic neurons. The scale of anatomical connectivity with these target cells was unaltered during lactation indicating a maintained GnRH input, inspite of the altered hormonal condition.

11.
Brain Struct Funct ; 223(5): 2143-2156, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29380121

ABSTRACT

Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.


Subject(s)
Hypothalamus/cytology , Kisspeptins/metabolism , Neurons/cytology , Neurons/metabolism , Aged , Aged, 80 and over , Autopsy , Axons/metabolism , Axons/ultrastructure , Carbocyanines/metabolism , Cell Body/ultrastructure , Dendrites/metabolism , Dendrites/ultrastructure , Glutamic Acid/metabolism , Humans , Imaging, Three-Dimensional , Kisspeptins/ultrastructure , Lysine/analogs & derivatives , Lysine/metabolism , Male , Microscopy, Confocal , Microscopy, Immunoelectron , Middle Aged , Nerve Net/metabolism , Nerve Net/ultrastructure , Synapses/metabolism , Synapses/ultrastructure , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/ultrastructure , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/ultrastructure , gamma-Aminobutyric Acid/metabolism
12.
J Neurosci ; 37(39): 9534-9549, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28874448

ABSTRACT

The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10-1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF.SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions.


Subject(s)
Cholinergic Neurons/metabolism , Glycine/metabolism , Prosencephalon/metabolism , Animals , Bicuculline/pharmacology , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Female , Glycine/pharmacology , Glycine Agents/pharmacology , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism , Inhibitory Postsynaptic Potentials , Male , Mice , Neuroglia/metabolism , Prosencephalon/cytology , Strychnine/pharmacology , Synapses/drug effects , Synapses/metabolism , Synapses/physiology
13.
Endocrinology ; 158(1): 69-83, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27805868

ABSTRACT

Ovarian hormones regulate the transcriptome of the hippocampus and modulate its functions. During menopause this complex signaling declines, leading to impaired learning and memory. This study was undertaken to clarify the effects of long-term, surgical ovariectomy (OVX) on the rat hippocampal transcriptome. At age of 13 months, intact control and ovariectomized groups were formed. All animals were killed 5 weeks after gonadectomy; hippocampal formations were dissected and processed for transcriptome analysis. Microarray and polymerase chain reaction studies identified 252 and 61 genes, respectively, whose expression was altered in the lack of ovarian hormones. Pathway analysis revealed impact on neuroactive ligand-receptor interaction, endocannabinoid, and estrogen signaling, among others. Network and interaction analyses of proteins encoded by OVX-regulated genes revealed upregulation of growth/troph/transcription factor signaling assembly (Mdk, Fgf1, Igf2, Ngf, Ngfr, Ntf3, Ntrk1, Otx2, Hif1a, Esr1, Nr4a3), peptides/peptide receptors (Cartpt, Kl, Ttr, Gnrhr), neurotransmission (Grm1, Gria4, Gls, Slc18a2, Kcnj6), and genes serving immune functions (C3, Ccl2, Itgam, Il1b). Downregulated clusters included neuropeptides and their receptors (Adcyap1, Cbln2, Cck, Cckbr, Crhr1 and 2, Oprd1, Nts, Penk, Sstr1, Vip), neurotransmitter signaling (Htr2c, Chrna3, Chrm4, Grm8, Hrh3, Slc17a6), and potassium channels (Kcnk9, Kcnj9, Kcnma1, Kcnc2). Several transcription factors (Rxra, Thrb), solute carriers and defense molecules (Apitd1, Bcl2, C1ql3, Ilr3a, Sod1, Sncb) also underwent downregulation. The findings indicate that surgical gonadectomy carried out at middle-age robustly changes the hippocampal transcriptome that alters neurogenesis, synaptic plasticity, immune modulation, causing cognitive dysfunctions.


Subject(s)
Hippocampus/metabolism , Menopause/metabolism , Transcriptome , Animals , Female , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Ovariectomy , Rats, Wistar , Real-Time Polymerase Chain Reaction
14.
Neuroscience ; 334: 13-25, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27476436

ABSTRACT

Dysfunction of N-Methyl-d-aspartate receptors (NMDARs) is believed to underlie some of the symptoms in schizophrenia, and non-competitive NMDAR antagonists (including phencyclidine (PCP)) are widely used as pharmacological schizophrenia models. Furthermore, mounting evidence suggests that impaired γ-aminobutyric acid (GABA) neurotransmission contributes to the cognitive deficits in schizophrenia. Thus alterations in GABAergic interneurons have been observed in schizophrenia patients and animal models. Acute systemic administration of PCP increases levels of c-Fos in several cortical and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions and that a substantial part of this activation is present in GABAergic interneurons in certain regions. This suggests that the psychotomimetic effect of PCP may be mediated via GABAergic interneurons.


Subject(s)
Brain/drug effects , Excitatory Amino Acid Antagonists/pharmacology , GABAergic Neurons/drug effects , Interneurons/drug effects , Phencyclidine/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Animals , Brain/metabolism , Calbindins/metabolism , GABAergic Neurons/metabolism , Immunohistochemistry , Interneurons/metabolism , Male , Parvalbumins/metabolism , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
15.
Hepatology ; 64(4): 1086-104, 2016 10.
Article in English | MEDLINE | ID: mdl-27387967

ABSTRACT

UNLABELLED: The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. CONCLUSIONS: This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104).


Subject(s)
Diet , Endoplasmic Reticulum Stress , Hypothalamic Hormones/physiology , Hypothalamus/physiology , Liver Diseases/etiology , Melanins/physiology , Pituitary Hormones/physiology , Receptors, Opioid, kappa/physiology , Animals , Inflammation/complications , Inflammation/etiology , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
16.
Front Cell Neurosci ; 10: 149, 2016.
Article in English | MEDLINE | ID: mdl-27375434

ABSTRACT

Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERß, and G protein-coupled ER). Selective ERß agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERß agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERß-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for DPN-altered functional patterns. These findings support the notion that selective activation of ERß may be a viable approach for treating the neural symptoms of E2 deficiency in menopause.

17.
Neuropsychopharmacology ; 41(9): 2241-51, 2016 08.
Article in English | MEDLINE | ID: mdl-26852738

ABSTRACT

The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling.


Subject(s)
Dopaminergic Neurons/physiology , Feeding Behavior , Motivation , Receptor, Melanocortin, Type 3/physiology , Reward , Ventral Tegmental Area/physiology , Action Potentials/drug effects , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Dopaminergic Neurons/cytology , Eating/drug effects , Food , Male , Neurons/cytology , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Rats, Wistar , Receptor, Melanocortin, Type 3/agonists , Receptor, Melanocortin, Type 3/metabolism , Signal Transduction , Sucrose/administration & dosage , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , gamma-MSH/administration & dosage
18.
Front Neuroanat ; 9: 112, 2015.
Article in English | MEDLINE | ID: mdl-26388742

ABSTRACT

The ventral tegmental area (VTA) is a main regulator of reward and integrates a wide scale of hormonal and neuronal information. Feeding-, energy expenditure-, stress, adaptation- and reproduction-related hypothalamic signals are processed in the VTA and influence the reward processes. However, the neuroanatomical origin and chemical phenotype of neurons mediating these signals to the VTA have not been fully characterized. In this study we have systematically mapped hypothalamic neurons that project to the VTA using the retrograde tracer Choleratoxin B subunit (CTB) and analyzed their putative gamma-aminobutyric acid (GABA) and/or glutamate character with in situ hybridization in male rats. 23.93 ± 3.91% of hypothalamic neurons projecting to the VTA was found in preoptic and 76.27 ± 4.88% in anterior, tuberal and mammillary hypothalamic regions. Nearly half of the retrogradely-labeled neurons in the preoptic, and more than one third in the anterior, tuberal and mammillary hypothalamus appeared in medially located regions. The analyses of vesicular glutamate transporter 2 (VGLUT2) and glutamate decarboxylase 65 (GAD65) mRNA expression revealed both amino acid markers in different subsets of retrogradely-labeled hypothalamic neurons, typically with the predominance of the glutamatergic marker VGLUT2. About one tenth of CTB-IR neurons were GAD65-positive even in hypothalamic nuclei expressing primarily VGLUT2. Some regions were populated mostly by GAD65 mRNA-containing retrogradely-labeled neurons. These included the perifornical part of the lateral hypothalamus where 58.63 ± 19.04% of CTB-IR neurons were GABAergic. These results indicate that both the medial and lateral nuclear compartments of the hypothalamus provide substantial input to the VTA. Furthermore, colocalization studies revealed that these projections not only use glutamate but also GABA for neurotransmission. These GABAergic afferents may underlie important inhibitory mechanism to fine-tune the reward value of specific signals in the VTA.

19.
Endocrinology ; 156(11): 3996-4007, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26248220

ABSTRACT

Xenoestrogens from synthetic or natural origin represent an increasing risk of disrupted endocrine functions including the physiological activity of the hypothalamo-pituitary-gonad axis. Ethinyl estradiol (EE2) is a synthetic estrogen used in contraceptive pills, whereas zearalenone (ZEA) is a natural mycoestrogen found with increasing prevalence in various cereal crops. Both EE2 and ZEA are agonists of estrogen receptor-α and accelerate puberty. However, the neuroendocrine mechanisms that are responsible for this effect remain unknown. Immature female Wistar rats were treated with EE2 (10 µg/kg), ZEA (10 mg/kg), or vehicle for 10 days starting from postnatal day 18. As a marker of puberty, the vaginal opening was recorded and neuropeptide and related transcription factor mRNA levels were measured by quantitative real time PCR and in situ hybridization histochemistry. Both ZEA and EE2 accelerated the vaginal opening, increased the uterine weight and the number of antral follicles in the ovary, and resulted in the increased central expression of gnrh. These changes occurred in parallel with an earlier increase of kiss1 mRNA in the anteroventral and rostral periventricular hypothalamus and an increased kisspeptin (KP) fiber density and KP-GnRH appositions in the preoptic area. These changes are compatible with a mechanism in which xenoestrogens overstimulate the developmentally unprepared reproductive system, which results in an advanced vaginal opening and an enlargement of the uterus at the periphery. Within the hypothalamus, ZEA and EE2 directly activate anteroventral and periventricular KP neurons to stimulate GnRH mRNA. However, GnRH and gonadotropin release and ovulation are disrupted due to xenoestrogen-mediated inhibitory KP signaling in the arcuate nucleus.


Subject(s)
Ethinyl Estradiol/pharmacology , Kisspeptins/metabolism , Sexual Maturation/drug effects , Zearalenone/pharmacology , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Estrogens/pharmacology , Estrogens, Non-Steroidal/pharmacology , Female , Gene Expression/drug effects , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Gonadotropins/metabolism , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/metabolism , In Situ Hybridization , Kisspeptins/genetics , Microscopy, Confocal , Neurons/drug effects , Neurons/metabolism , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Kisspeptin-1 , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Uterus/drug effects , Uterus/growth & development , Uterus/metabolism , Xenobiotics/pharmacology
20.
Endocrinology ; 156(7): 2632-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25924104

ABSTRACT

In the hippocampus, estrogens are powerful modulators of neurotransmission, synaptic plasticity and neurogenesis. In women, menopause is associated with increased risk of memory disturbances, which can be attenuated by timely estrogen therapy. In animal models of menopause, 17ß-estradiol (E2) replacement improves hippocampus-dependent spatial memory. Here, we explored the effect of E2 replacement on hippocampal gene expression in a rat menopause model. Middle-aged ovariectomized female rats were treated continuously for 29 days with E2, and then, the hippocampal transcriptome was investigated with Affymetrix expression arrays. Microarray data were analyzed by Bioconductor packages and web-based softwares, and verified with quantitative PCR. At standard fold change selection criterion, 156 genes responded to E2. All alterations but 4 were transcriptional activation. Robust activation (fold change > 10) occurred in the case of transthyretin, klotho, claudin 2, prolactin receptor, ectodin, coagulation factor V, Igf2, Igfbp2, and sodium/sulfate symporter. Classification of the 156 genes revealed major groups, including signaling (35 genes), metabolism (31 genes), extracellular matrix (17 genes), and transcription (16 genes). We selected 33 genes for further studies, and all changes were confirmed by real-time PCR. The results suggest that E2 promotes retinoid, growth factor, homeoprotein, neurohormone, and neurotransmitter signaling, changes metabolism, extracellular matrix composition, and transcription, and induces protective mechanisms via genomic effects. We propose that these mechanisms contribute to effects of E2 on neurogenesis, neural plasticity, and memory functions. Our findings provide further support for the rationale to develop safe estrogen receptor ligands for the maintenance of cognitive performance in postmenopausal women.


Subject(s)
Estradiol/pharmacology , Estrogen Replacement Therapy , Estrogens/pharmacology , Gene Expression/drug effects , Hippocampus/drug effects , Menopause/drug effects , RNA, Messenger/drug effects , Animals , Cation Transport Proteins/drug effects , Cation Transport Proteins/genetics , Claudins/drug effects , Claudins/genetics , Factor V/drug effects , Factor V/genetics , Female , Glucuronidase/drug effects , Glucuronidase/genetics , Insulin-Like Growth Factor Binding Protein 2/drug effects , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor II/drug effects , Insulin-Like Growth Factor II/genetics , Intracellular Signaling Peptides and Proteins , Klotho Proteins , Models, Animal , Prealbumin/drug effects , Prealbumin/genetics , Proteins/drug effects , Proteins/genetics , RNA, Messenger/metabolism , Rats , Receptors, Prolactin/drug effects , Receptors, Prolactin/genetics , Sodium Sulfate Cotransporter , Symporters/drug effects , Symporters/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...