Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
STAR Protoc ; 5(2): 103044, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678572

ABSTRACT

The amnion is a thin layer of fetal origin in contact with the amniotic fluid which plays a key role at the feto-maternal interface during pregnancy. Here, we present a protocol for isolation of human and Rhesusmacaque amnion cells. We describe steps for tissue dissection, cell isolation for flow cytometry analysis, and RNA isolation for RNA sequencing library preparation and analysis. This protocol can provide insights into altered immunological pathways during intrauterine infections to develop new therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Presicce et al.1.

2.
J Neuroinflammation ; 21(1): 16, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200558

ABSTRACT

BACKGROUND: Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS: Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS: We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION: These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.


Subject(s)
Chorioamnionitis , Premature Birth , Infant, Newborn , Female , Infant , Animals , Humans , Pregnancy , Hedgehog Proteins , Macaca mulatta , Escherichia coli , Infant, Premature , Cerebellum , RNA, Small Nuclear
3.
iScience ; 26(11): 108118, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37953944

ABSTRACT

Intrauterine infection/inflammation (IUI) is a frequent complication of pregnancy leading to preterm labor and fetal inflammation. How inflammation is modulated at the maternal-fetal interface is unresolved. We compared transcriptomics of amnion (a fetal tissue in contact with amniotic fluid) in a preterm Rhesus macaque model of IUI induced by lipopolysaccharide with human cohorts of chorioamnionitis. Bulk RNA sequencing (RNA-seq) amnion transcriptomic profiles were remarkably similar in both Rhesus and human subjects and revealed that induction of key labor-mediating genes such as IL1 and IL6 was dependent on nuclear factor κB (NF-κB) signaling and reversed by the anti-tumor necrosis factor (TNF) antibody Adalimumab. Inhibition of collagen biosynthesis by IUI was partially restored by Adalimumab. Interestingly, single-cell transcriptomics, flow cytometry, and immunohistology demonstrated that a subset of amnion mesenchymal cells (AMCs) increase CD14 and other myeloid cell markers during IUI both in the human and Rhesus macaque. Our data suggest that CD14+ AMCs represent activated AMCs at the maternal-fetal interface.

4.
Front Immunol ; 14: 1150208, 2023.
Article in English | MEDLINE | ID: mdl-37275869

ABSTRACT

Introduction: Chorioamnionitis is common in preterm birth and associated with a higher risk of intestinal inflammation and necrotizing enterocolitis. The intestinal inflammation influences the enteric nervous system development. We hypothesized that inflammation and innervation in the fetal ileum may be modified by chorioamnionitis induced by repeated challenge with lipopolysaccharide and/or preexisting Ureaplasma parvum infection at very low gestational age equivalent to 60% of term. Materials and methods: Time mated ovine fetuses were exposed by intraamniotic injections to chronic Ureaplasma parvum for 24 days and/or lipopolysaccharide for 7 days, 2 days, or 7 & 2 days before delivery at 94 +/-2 days of gestational age (term at approximately 150 days). Intestinal inflammation as well as structural changes of the enteric nervous system were assessed. Results: Lipopolysaccharide exposure increased CD3 and myeloperoxidase-positive cells (p < 0.05). Repetitive exposure to lipopolysaccharide or combined Ureaplasma parvum & lipopolysaccharide exposure increased intestinal inflammation (p < 0.05). The reduction of nuclei of neurons was most significant with repetitive lipopolysaccharide exposures but could be detected in all other intervention groups compared to the control group. Astrocyte-like glial cells increased if exposure to lipopolysaccharide was only 2 days before delivery or chronic exposure to Ureaplasma parvum existed beforehand (p < 0.05). Discussion: After exposure to chorioamnionitis induced by Ureaplasma parvum and/or lipopolysaccharide, inflammatory responses as well as structural changes of the enteric nervous system were more pronounced the longer and the more frequent the exposure to pro-inflammatory stimuli before birth. These changes may cause functional effects of clinical importance.


Subject(s)
Chorioamnionitis , Premature Birth , Pregnancy , Female , Sheep , Animals , Infant, Newborn , Humans , Infant , Chorioamnionitis/chemically induced , Lipopolysaccharides/pharmacology , Sheep, Domestic , Fetus , Inflammation
5.
Cell Rep ; 42(4): 112352, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37027297

ABSTRACT

Clinical evidence points to a function for B cell-activating factor (BAFF) in pregnancy. However, direct roles for BAFF-axis members in pregnancy have not been examined. Here, via utility of genetically modified mice, we report that BAFF promotes inflammatory responsiveness and increases susceptibility to inflammation-induced preterm birth (PTB). In contrast, we show that the closely related A proliferation-inducing ligand (APRIL) decreases inflammatory responsiveness and susceptibility to PTB. Known BAFF-axis receptors serve a redundant function in signaling BAFF/APRIL presence in pregnancy. Treatment with anti-BAFF/APRIL monoclonal antibodies or BAFF/APRIL recombinant proteins is sufficient to manipulate susceptibility to PTB. Notably, macrophages at the maternal-fetal interface produce BAFF, while BAFF and APRIL presence divergently shape macrophage gene expression and inflammatory function. Overall, our findings demonstrate that BAFF and APRIL play divergent inflammatory roles in pregnancy and provide therapeutic targets for mitigating risk of inflammation-induced PTB.


Subject(s)
Premature Birth , Animals , Female , Mice , Pregnancy , B-Cell Activating Factor , Inflammation , Signal Transduction , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics
6.
PLoS One ; 18(3): e0279991, 2023.
Article in English | MEDLINE | ID: mdl-36952446

ABSTRACT

Preterm birth is a global public health crisis which results in significant neonatal and maternal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous preterm birth, and we have few diagnostic markers for adequate assessment of placental development and function. Previous studies of placental pathology and our transcriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm birth. It is known that placental DNA methylation changes over gestation. We hypothesized that if placental hypermaturity is present in our samples, we would observe a unique idiopathic spontaneous preterm birth DNA methylation profile potentially driving the gene expression differences we previously identified in our placental samples. Our results indicate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern suggesting hypermaturity. Only seven significant differentially methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the controls) profile were identified, indicating unusually high similarity in DNA methylation between idiopathic spontaneous preterm birth and term birth samples. We identified an additional 1,718 significantly methylated regions in our gestational age matched controls where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern, again indicating a striking level of similarity between the idiopathic spontaneous preterm birth and term birth samples. Pathway analysis of these regions revealed differences in genes within the WNT and Cadherin signaling pathways, both of which are essential in placental development and maturation. Taken together, these data demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature methylation signature than expected given their respective gestational age which likely impacts birth timing.


Subject(s)
Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Premature Birth/pathology , Placenta/metabolism , Gene Expression Profiling , DNA Methylation , Term Birth
8.
Sci Rep ; 12(1): 8438, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589747

ABSTRACT

The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 µg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.


Subject(s)
Air Pollutants , Placenta Diseases , Air Pollutants/toxicity , Animals , Decidua , Female , Humans , Mice , Mice, Inbred C57BL , Particulate Matter/toxicity , Placenta , Pregnancy , Trophoblasts
9.
Mucosal Immunol ; 15(4): 730-744, 2022 04.
Article in English | MEDLINE | ID: mdl-35314757

ABSTRACT

Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which leads to elevated levels of pro-inflammatory mediators and microbial products in the amniotic fluid, which come in contact with fetal lungs. Yet, fetal pulmonary immune responses to such exposure remain poorly characterized. To address this gap, we used our established HCA model, in which pregnant Rhesus macaques receive intraamniotic (IA) saline or LPS. IA LPS induced a potent and rapid myeloid cell response in fetal lungs, dominated by neutrophils and monocytes/macrophages. Infiltrating and resident myeloid cells exhibited transcriptional profiles consistent with exposure to TLR ligands, as well as cytokines, notably IL-1 and TNFα. Although simultaneous, in vivo blockade of IL-1 and TNFα signaling did not prevent the inflammatory cell recruitment, it blunted the lung overall inflammatory state reducing communication between, and activation of, infiltrating immune cells. Our data indicate that the fetal innate immune system can mount a rapid multi-faceted pulmonary immune response to in utero exposure to inflammation. These data provide mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlight therapeutic potential of inflammatory blockade in the fetus.


Subject(s)
Chorioamnionitis , Pneumonia , Premature Birth , Amniotic Fluid , Animals , Chorioamnionitis/pathology , Female , Humans , Inflammation , Interleukin-1 , Lipopolysaccharides , Lung , Macaca mulatta , Pregnancy , Premature Birth/pathology , Tumor Necrosis Factor-alpha
10.
Sci Transl Med ; 14(638): eabl8574, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35353543

ABSTRACT

Perinatal inflammatory stress is associated with early life morbidity and lifelong consequences for pulmonary health. Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25 to 40% of preterm births. Severe chorioamnionitis with preterm birth is associated with significantly increased risk of pulmonary disease and secondary infections in childhood, suggesting that fetal inflammation may markedly alter the development of the lung. Here, we used intra-amniotic lipopolysaccharide (LPS) challenge to induce experimental chorioamnionitis in a prenatal rhesus macaque (Macaca mulatta) model that mirrors structural and temporal aspects of human lung development. Inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure, particularly the close association and coordinated differentiation of alveolar type 1 pneumocytes and specialized alveolar capillary endothelium. Single-cell RNA sequencing analysis defined a multicellular alveolar signaling niche driving alveologenesis that was extensively disrupted by perinatal inflammation, leading to a loss of gas exchange surface and alveolar simplification, with notable resemblance to chronic lung disease in newborns. Blockade of the inflammatory cytokines interleukin-1ß and tumor necrosis factor-α ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells, restoring structural integrity and key signaling networks in the developing alveolus. These data provide new insight into the pathophysiology of developmental lung injury and suggest that modulating inflammation is a promising therapeutic approach to prevent fetal consequences of chorioamnionitis.


Subject(s)
Chorioamnionitis , Premature Birth , Animals , Chorioamnionitis/chemically induced , Chorioamnionitis/pathology , Female , Lung/pathology , Macaca mulatta , Pregnancy , Premature Birth/prevention & control , Pulmonary Gas Exchange
11.
PLoS Biol ; 19(9): e3001385, 2021 09.
Article in English | MEDLINE | ID: mdl-34495952

ABSTRACT

Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli-infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli-infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.


Subject(s)
Immunity , Obstetric Labor, Premature/pathology , Pregnancy Complications/immunology , Animals , Disease Models, Animal , Escherichia coli/pathogenicity , Escherichia coli Infections/complications , Escherichia coli Infections/immunology , Female , Inflammation , Lipopolysaccharides/toxicity , Macaca mulatta , Pregnancy
12.
Front Pediatr ; 9: 614209, 2021.
Article in English | MEDLINE | ID: mdl-33777863

ABSTRACT

Background: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pro-inflammatory cytokine that is increased in the amniotic fluid in chorioamnionitis and elevated in the fetal lung with endotoxin exposure. Although GM-CSF has a pivotal role in fetal lung development, it stimulates pulmonary macrophages and is associated with the development of bronchopulmonary dysplasia (BPD). How antenatal GM-CSF results in recruitment of lung macrophage leading to BPD needs further elucidation. Hence, we used a transgenic and knock-out mouse model to study the effects of GM-CSF focusing on the fetal lung macrophage. Methods: Using bitransgenic (BTg) mice that conditionally over-expressed pulmonary GM-CSF after doxycycline treatment, and GM-CSF knock-out (KO) mice with no GM-CSF expression, we compared the ontogeny and immunophenotype of lung macrophages in BTg, KO and control mice at various prenatal and postnatal time points using flow cytometry and immunohistology. Results: During fetal life, compared to controls, BTg mice over-expressing pulmonary GM-CSF had increased numbers of lung macrophages that were CD68+ and these were primarily located in the interstitium rather than alveolar spaces. The lung macrophages that accumulated were predominantly CD11b+F4/80+ indicating immature macrophages. Conversely, lung macrophages although markedly reduced, were still present in GM-CSF KO mice. Conclusion: Increased exposure to GM-CSF antenatally, resulted in accumulation of immature macrophages in the fetal lung interstitium. Absence of GM-CSF did not abrogate but delayed the transitioning of interstitial macrophages. Together, these results suggest that other perinatal factors may be involved in modulating the maturation of alveolar macrophages in the developing fetal lung.

13.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33328385

ABSTRACT

Respiratory complicˆations are the major cause of morbidity and mortality among preterm infants, which is partially prevented by the administration of antenatal corticosteroids (ACS). Most very preterm infants are exposed to chorioamnionitis, but short- and long-term effects of ACS treatment in this setting are not well defined. In low-resource settings, ACS increased neonatal mortality by perhaps increasing infection. We report that treatment with low-dose ACS in the setting of inflammation induced by intraamniotic lipopolysaccharide (LPS) in rhesus macaques improves lung compliance and increases surfactant production relative to either exposure alone. RNA sequencing shows that these changes are mediated by suppression of proliferation and induction of mesenchymal cellular death via TP53. The combined exposure results in a mature-like transcriptomic profile with inhibition of extracellular matrix development by suppression of collagen genes COL1A1, COL1A2, and COL3A1 and regulators of lung development FGF9 and FGF10. ACS and inflammation also suppressed signature genes associated with proliferative mesenchymal progenitors similar to the term gestation lung. Treatment with ACS in the setting of inflammation may result in early respiratory advantage to preterm infants, but this advantage may come at a risk of abnormal extracellular matrix development, which may be associated with increased risk of chronic lung disease.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Lung/drug effects , Premature Birth/drug therapy , Adrenal Cortex Hormones/adverse effects , Animals , Animals, Newborn , Chorioamnionitis/drug therapy , Chorioamnionitis/genetics , Dexamethasone/pharmacology , Disease Models, Animal , Female , Glucocorticoids/pharmacology , Inflammation/drug therapy , Inflammation/genetics , Macaca mulatta , Male , Pregnancy , Pulmonary Surfactants/pharmacology
14.
Eur Respir Rev ; 29(157)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33004528

ABSTRACT

The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).


Subject(s)
Lung Diseases , Respiratory Tract Diseases , Animals , Chronic Disease , Environmental Exposure , Female , Humans , Lung , Lung Diseases/diagnosis , Lung Diseases/epidemiology , Lung Diseases/etiology , Pregnancy
15.
Pediatr Ann ; 49(7): e305-e312, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32674168

ABSTRACT

Mycoplasma species (spp.) can be commensals or opportunistic pathogens of the urogenital tract, and they can be commonly isolated from amniotic fluid, placenta, and fetal/neonatal tissue or blood in mothers delivering prematurely or their preterm infants. Although the presence of Mycoplasma spp. has been associated with adverse maternal-fetal outcomes such as preterm birth and maternal chorioamnionitis, it is less clear whether vertical transmission to the neonate results in colonization or active infection/inflammation. Moreover, the presence of Mycoplasma spp. in neonatal blood, cerebrospinal fluid, or tissue has been variably associated with increased risk of neonatal comorbidities, especially bronchopulmonary dysplasia (BPD). Although the treatment of the mother or neonate with antibiotics is effective in eradicating ureaplasma, it is not clear that the treatment is effective in reducing the incidence of major morbidities of the preterm neonate (eg, BPD). In this article, we review the animal and clinical data for ureaplasma-related complications and treatment strategies. [Pediatr Ann. 2020;49(7):e305-e312.].


Subject(s)
Anti-Bacterial Agents/therapeutic use , Mycoplasma Infections/drug therapy , Mycoplasma Infections/pathology , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/pathology , Ureaplasma Infections/drug therapy , Ureaplasma Infections/pathology , Animals , Female , Humans , Infant, Newborn , Infant, Premature , Infectious Disease Transmission, Vertical , Mycoplasma Infections/diagnosis , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Premature Birth , Ureaplasma Infections/diagnosis
16.
Front Immunol ; 11: 866, 2020.
Article in English | MEDLINE | ID: mdl-32528468

ABSTRACT

Intra-amniotic (IA) inflammation is associated with significant morbidities for both the mother and the fetus. Prior studies have illustrated many of the effects of IA inflammation on the uterine lining (decidua) and membranous layers of the placenta at the fetal-maternal interface. However, much less is known about the immunological response occurring within the villous placenta. Using a rhesus macaque model of lipopolysaccharide (LPS)-induced IA inflammation, we showed that pregnancy-matched choriodecidua and villi have distinct immunological profiles in rhesus pregnancies. In the choriodecidua, we show that the abundance of neutrophils, multiple populations of antigen-presenting cells, and two populations of natural killer (NK) cells changes with prenatal IA LPS exposure. In contrast, in immune cells within the villous placenta we observed alterations in the abundance of B cells, monocytes, and CD8 T cells. Prior work has illustrated that IA inflammation leads to an increase in tumor necrosis factor alpha (TNFα) at the fetal-maternal interface. In this study, pretreatment with a TNFα blockade partially reversed inflammation in the placental villi. Furthermore, we report that immune cells in the villous placenta sensed LPS during our experimental window, and subsequently activated T cells to produce proinflammatory cytokines. Moreover, this study is the first report of memory T cells in third-trimester non-human primate placental villi and provides evidence that manipulation of immune cells in the villi at the fetal-maternal interface should be considered as a potential therapeutic target for IA inflammation.


Subject(s)
Chorioamnionitis/immunology , Chorionic Villi/immunology , Decidua/immunology , Leukocytes/immunology , Lymphocyte Activation , Animals , Biomarkers/metabolism , Chorioamnionitis/chemically induced , Chorioamnionitis/drug therapy , Chorioamnionitis/metabolism , Chorionic Villi/drug effects , Chorionic Villi/metabolism , Decidua/drug effects , Decidua/metabolism , Disease Models, Animal , Female , Immunophenotyping , Leukocytes/drug effects , Leukocytes/metabolism , Lipopolysaccharides , Macaca mulatta , Pregnancy , Signal Transduction , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism
17.
Front Immunol ; 11: 649, 2020.
Article in English | MEDLINE | ID: mdl-32373122

ABSTRACT

Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.


Subject(s)
Chorioamnionitis/immunology , Infections/immunology , Vagina/immunology , Animals , Dysbiosis , Female , Humans , Microbiota , Pregnancy , Pregnancy Complications, Infectious , Vagina/microbiology
18.
Front Immunol ; 11: 558, 2020.
Article in English | MEDLINE | ID: mdl-32308656

ABSTRACT

Accumulation of activated neutrophils at the feto-maternal interface is a defining hallmark of intrauterine inflammation (IUI) that might trigger an excessive immune response during pregnancy. Mechanisms responsible of this massive neutrophil recruitment are poorly investigated. We have previously showed that intraamniotic injection of LPS in rhesus macaques induced a neutrophil predominant inflammatory response similar to that seen in human IUI. Here, we demonstrate that anti-TNF antibody (Adalimumab) inhibited ~80% of genes induced by LPS involved in inflammatory signaling and innate immunity in chorio-decidua neutrophils. Consistent with the gene expression data, TNF-blockade decreased LPS-induced neutrophil accumulation and activation at the feto-maternal interface. We also observed a reduction in IL-6 and other pro-inflammatory cytokines but not prostaglandins concentrations in the amniotic fluid. Moreover, TNF-blockade decreased mRNA expression of inflammatory cytokines in the chorio-decidua but not in the uterus, suggesting that inhibition of TNF-signaling decreased the inflammation in a tissue-specific manner within the uterine compartment. Taken together, our results demonstrate a predominant role for TNF-signaling in modulating the neutrophilic infiltration at the feto-maternal interface during IUI and suggest that blockade of TNF-signaling could be considered as a therapeutic approach for IUI, the major leading cause of preterm birth.


Subject(s)
Chorioamnionitis/immunology , Neutrophils/immunology , Tumor Necrosis Factor-alpha/immunology , Adalimumab/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Chorioamnionitis/chemically induced , Female , Lipopolysaccharides/toxicity , Macaca mulatta , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , Pregnancy , Tumor Necrosis Factor-alpha/antagonists & inhibitors
19.
J Immunol ; 204(10): 2651-2660, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32238461

ABSTRACT

Preterm birth (PTB) is a major cause of neonatal mortality and morbidity, often triggered by chorioamnionitis or intrauterine inflammation (IUI) with or without infection. Recently, there has been a strong association of IL-1 with PTB. We hypothesized that IL-1R-associated kinase 1 (IRAK1), a key signaling mediator in the TLR/IL-1 pathway, plays a critical role in PTB. In human fetal membranes (FM) collected immediately after birth from women delivering preterm, p-IRAK1 was significantly increased in all the layers of FM with chorioamnionitis, compared with no-chorioamnionitis subjects. In a preterm rhesus macaque model of IUI given intra-amniotic LPS, induction of p-IRAK1 and downstream proinflammatory signaling mediators were seen in the FM. In a C57BL/6J wild-type PTB mouse model of IUI given intrauterine LPS, an IRAK1 inhibitor significantly decreased PTB and increased live birth in a dose-dependent manner. Furthermore, IRAK1 knockout mice were protected from LPS-induced PTB, which was seen in wild-type controls. Activation of IRAK1 was maintained by K63-mediated ubiquitination in preterm FM of humans with chorioamnionitis and rhesus and mouse IUI models. Mechanistically, IRAK1 induced PTB in the mouse model of IUI by upregulating expression of COX-2. Thus, our data from human, rhesus, and mouse demonstrates a critical role IRAK1 in IUI and inflammation-associated PTB and suggest it as potential therapeutic target in IUI-induced PTB.


Subject(s)
Extraembryonic Membranes/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Premature Birth/metabolism , Uterus/immunology , Adult , Animals , Chorioamnionitis , Disease Models, Animal , Extraembryonic Membranes/pathology , Female , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Lipopolysaccharides/immunology , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Pregnancy , Premature Birth/immunology , Young Adult
20.
JCI Insight ; 5(4)2020 02 27.
Article in English | MEDLINE | ID: mdl-31990688

ABSTRACT

Adequate iron supply during pregnancy is essential for fetal development. However, how fetal or amniotic fluid iron levels are regulated during healthy pregnancy, or pregnancies complicated by intraamniotic infection or inflammation (IAI), is unknown. We evaluated amniotic fluid and fetal iron homeostasis in normal and complicated murine, macaque, and human pregnancy. In mice, fetal iron endowment was affected by maternal iron status, but amniotic fluid iron concentrations changed little during maternal iron deficiency or excess. In murine and macaque models of inflamed pregnancy, the fetus responded to maternal systemic inflammation or IAI by rapidly upregulating hepcidin and lowering iron in fetal blood, without altering amniotic fluid iron. In humans, elevated cord blood hepcidin with accompanying hypoferremia was observed in pregnancies with antenatal exposure to IAI compared with those that were nonexposed. Hepcidin was also elevated in human amniotic fluid from pregnancies with IAI compared with those without IAI, but amniotic fluid iron levels did not differ between the groups. Our studies in mice, macaques, and humans demonstrate that amniotic fluid iron is largely unregulated but that the rapid induction of fetal hepcidin by inflammation and consequent fetal hypoferremia are conserved mechanisms that may be important in fetal host defense.


Subject(s)
Amniotic Fluid/metabolism , Homeostasis , Iron/metabolism , Pregnancy Complications/metabolism , Animals , Case-Control Studies , Female , Fetal Blood/metabolism , Fetus/metabolism , Humans , Iron/blood , Macaca mulatta , Mice , Mice, Inbred C57BL , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...