Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Neuron ; 111(15): 2329-2347.e7, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37279748

ABSTRACT

Autophagy disorders prominently affect the brain, entailing neurodevelopmental and neurodegenerative phenotypes in adolescence or aging, respectively. Synaptic and behavioral deficits are largely recapitulated in mouse models with ablation of autophagy genes in brain cells. Yet, the nature and temporal dynamics of brain autophagic substrates remain insufficiently characterized. Here, we immunopurified LC3-positive autophagic vesicles (LC3-pAVs) from the mouse brain and proteomically profiled their content. Moreover, we characterized the LC3-pAV content that accumulates after macroautophagy impairment, validating a brain autophagic degradome. We reveal selective pathways for aggrephagy, mitophagy, and ER-phagy via selective autophagy receptors, and the turnover of numerous synaptic substrates, under basal conditions. To gain insight into the temporal dynamics of autophagic protein turnover, we quantitatively compared adolescent, adult, and aged brains, revealing critical periods of enhanced mitophagy or degradation of synaptic substrates. Overall, this resource unbiasedly characterizes the contribution of autophagy to proteostasis in the maturing, adult, and aged brain.


Subject(s)
Autophagy , Mitophagy , Animals , Mice , Autophagy/genetics , Macroautophagy , Aging , Brain
2.
Cell Stress ; 6(12): 93-107, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36478958

ABSTRACT

(Macro)autophagy is a major lysosome-dependent degradation mechanism which engulfs, removes and recycles unwanted cytoplasmic material, including damaged organelles and toxic protein aggregates. Although a few studies implicate autophagy in CNS demyelinating pathologies, its role, particularly in mature oligodendrocytes and CNS myelin, remains poorly studied. Here, using both pharmacological and genetic inhibition of the autophagic machinery, we provide evidence that autophagy is an essential mechanism for oligodendrocyte maturation in vitro. Our study reveals that two core myelin proteins, namely proteolipid protein (PLP) and myelin basic protein (MBP) are incorporated into autophagosomes in oligodendrocytes, resulting in their degradation. Furthermore, we ablated atg5, a core gene of the autophagic machinery, specifically in myelinating glial cells in vivo by tamoxifen administration (plp-Cre ERT2 ; atg5 f/f ) and showed that myelin maintenance is perturbed, leading to PLP accumulation. Significant morphological defects in myelin membrane such as decompaction accompanied with increased axonal degeneration are observed. As a result, the mice exhibit behavioral deficits. In summary, our data highlight that the maintenance of adult myelin homeostasis in the CNS requires the involvement of a fully functional autophagic machinery.

3.
EMBO J ; 41(22): e110963, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36217825

ABSTRACT

Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.


Subject(s)
Neurons , Synapses , Mice , Animals , Synapses/metabolism , Neurons/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Signal Transduction , Autophagy
4.
Autophagy ; 18(8): 2011-2012, 2022 08.
Article in English | MEDLINE | ID: mdl-35387558

ABSTRACT

Neurons are highly polarized and functionally compartmentalized cells. Under basal conditions, the biogenesis of autophagic vesicles (AVs) was previously shown to take place in the axon tip. As the sequestration of autophagic cargo occurs during the formation of nascent AVs, this would mean that only axonal proteins can be degraded via macroautophagy/autophagy, unless AV biogenesis can also take place on demand, in other neuronal compartments. Our work shows that indeed, activation of NMDA or group I metabotropic glutamate receptors during long-term synaptic depression (LTD) triggers the biogenesis of AVs locally in dendrites. Under these conditions, nascent dendritic AVs are required for synaptic plasticity, as they sequester postsynaptic proteins, whose removal from the postsynapse is necessary for LTD.


Subject(s)
Dendrites , Long-Term Synaptic Depression , Autophagy , Dendrites/metabolism , Hippocampus/metabolism , Long-Term Synaptic Depression/physiology , Neurons/metabolism , Synapses
5.
Nat Commun ; 13(1): 680, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115539

ABSTRACT

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.


Subject(s)
Autophagy/physiology , Dendritic Spines/physiology , Long-Term Synaptic Depression/physiology , Proteome/metabolism , Proteomics/methods , Synaptic Potentials/physiology , Animals , Autophagy/genetics , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neuronal Plasticity/physiology , Neurons/metabolism , Neurons/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
6.
Cell Stress ; 5(10): 146-166, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34708187

ABSTRACT

Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not surprisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in invertebrate and mammalian models.

7.
Nat Commun ; 12(1): 2849, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990590

ABSTRACT

Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD.


Subject(s)
Disks Large Homolog 4 Protein/physiology , Long-Term Synaptic Depression/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Adenosine Triphosphate/administration & dosage , Animals , Autophagy/physiology , Cells, Cultured , Disks Large Homolog 4 Protein/deficiency , Female , Hippocampus/cytology , Hippocampus/physiology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Miniature Postsynaptic Potentials/physiology , Models, Neurological , N-Methylaspartate/administration & dosage , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Rats , Rats, Sprague-Dawley , Receptors, AMPA/physiology , Receptors, Purinergic P2X/physiology
8.
Cell Metab ; 26(1): 230-242.e5, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28683289

ABSTRACT

Autophagy is crucial for neuronal integrity. Loss of key autophagic components leads to progressive neurodegeneration and structural defects in pre- and postsynaptic morphologies. However, the molecular mechanisms regulating autophagy in the brain remain elusive. Similarly, while it is widely accepted that protein turnover is required for synaptic plasticity, the contribution of autophagy to the degradation of synaptic proteins is unknown. Here, we report that BDNF signaling via the tropomyosin receptor kinase B (TrkB) and the phosphatidylinositol-3' kinase (PI3K)/Akt pathway suppresses autophagy in vivo. In addition, we demonstrate that suppression of autophagy is required for BDNF-induced synaptic plasticity and for memory enhancement under conditions of nutritional stress. Finally, we identify three key remodelers of postsynaptic densities as cargo of autophagy. Our results establish autophagy as a pivotal component of BDNF signaling, which is essential for BDNF-induced synaptic plasticity. This molecular mechanism underlies behavioral adaptations that increase fitness in times of scarcity.


Subject(s)
Autophagy , Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity , Signal Transduction , Animals , Fasting , Male , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prosencephalon/cytology , Prosencephalon/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, trkB/metabolism
9.
Neurochem Res ; 39(3): 546-55, 2014.
Article in English | MEDLINE | ID: mdl-24005821

ABSTRACT

Mitochondria biogenesis is a fundamental process for the organization and normal function of all cells. Since the majority of mitochondrial proteins are synthesized in the cytosol, protein import is the major mechanism for mitochondria biogenesis. We describe the different pathways that ensure correct targeting and intra mitochondrial sorting of mitochondrial proteins. The import process of several proteins of the mitochondrial intermembrane space relies on the Mitochondrial Import and Assembly 40 and Essential for respiration and vegetative growth 1 (Erv1) proteins that together constitute the oxidative folding machinery of the mitochondrial intermembrane space. Recent work has implicated the FAD-oxidase protein Erv1 (ad its human homolog Augmenter of Liver Regeneration) as an anti-apoptotic factor in mammalian cells (including neuronal cells) that undergo Reactive Oxygen Species-triggered apoptosis. The different roles of this protein as a key factor in mitochondria biogenesis, iron-sulfur cluster biogenesis and in neuronal protection against apoptosis are discussed.


Subject(s)
Apoptosis/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons/metabolism , Stress, Physiological/physiology , Animals , Humans , Neurodegenerative Diseases/metabolism
10.
J Mol Biol ; 425(3): 594-608, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23207295

ABSTRACT

The functional role of unstructured protein domains is an emerging field in the frame of intrinsically disordered proteins. The involvement of intrinsically disordered domains (IDDs) in protein targeting and biogenesis processes in mitochondria is so far not known. Here, we have characterized the structural/dynamic and functional properties of an IDD of the sulfhydryl oxidase ALR (augmenter of liver regeneration) located in the intermembrane space of mitochondria. At variance to the unfolded-to-folded structural transition of several intrinsically disordered proteins, neither substrate recognition events nor redox switch of its shuttle cysteine pair is linked to any such structural change. However, this unstructured domain performs a dual function in two cellular compartments: it acts (i) as a mitochondrial targeting signal in the cytosol and (ii) as a crucial recognition site in the disulfide relay system of intermembrane space. This domain provides an exciting new paradigm for IDDs ensuring two distinct functions that are linked to intracellular organelle targeting.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Humans , Magnetic Resonance Spectroscopy , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Protein Conformation , Saccharomyces cerevisiae/enzymology
11.
ACS Chem Biol ; 7(4): 707-14, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22296668

ABSTRACT

The interaction of Mia40 with Erv1/ALR is central to the oxidative protein folding in the intermembrane space of mitochondria (IMS) as Erv1/ALR oxidizes reduced Mia40 to restore its functional state. Here we address the role of Mia40 in the import and maturation of Erv1/ALR. The C-terminal FAD-binding domain of Erv1/ALR has an essential role in the import process by creating a transient intermolecular disulfide bond with Mia40. The action of Mia40 is selective for the formation of both intra and intersubunit structural disulfide bonds of Erv1/ALR, but the complete maturation process requires additional binding of FAD. Both of these events must follow a specific sequential order to allow Erv1/ALR to reach the fully functional state, illustrating a new paradigm for protein maturation in the IMS.


Subject(s)
Cytochrome Reductases/metabolism , Flavin-Adenine Dinucleotide/metabolism , Mitochondrial Membranes/metabolism , Disulfides , Humans , Mitochondrial Membrane Transport Proteins , Mitochondrial Precursor Protein Import Complex Proteins , Oxidoreductases Acting on Sulfur Group Donors , Protein Folding , Protein Transport
12.
Proc Natl Acad Sci U S A ; 108(12): 4811-6, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383138

ABSTRACT

Oxidative protein folding in the mitochondrial intermembrane space requires the transfer of a disulfide bond from MIA40 to the substrate. During this process MIA40 is reduced and regenerated to a functional state through the interaction with the flavin-dependent sulfhydryl oxidase ALR. Here we present the mechanistic basis of ALR-MIA40 interaction at atomic resolution by biochemical and structural analyses of the mitochondrial ALR isoform and its covalent mixed disulfide intermediate with MIA40. This ALR isoform contains a folded FAD-binding domain at the C-terminus and an unstructured, flexible N-terminal domain, weakly and transiently interacting one with the other. A specific region of the N-terminal domain guides the interaction with the MIA40 substrate binding cleft (mimicking the interaction of the substrate itself), without being involved in the import of ALR. The hydrophobicity-driven binding of this region ensures precise protein-protein recognition needed for an efficient electron transfer process.


Subject(s)
Cytochrome Reductases/chemistry , Flavin-Adenine Dinucleotide/chemistry , Mitochondrial Membrane Transport Proteins/chemistry , Binding Sites , Cytochrome Reductases/metabolism , Electron Transport/physiology , Flavin-Adenine Dinucleotide/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Isoenzymes/chemistry , Isoenzymes/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Oxidoreductases Acting on Sulfur Group Donors , Protein Structure, Tertiary , Substrate Specificity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL