Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 15093, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641147

ABSTRACT

Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of beneficial biological and social epidemics differ from those of detrimental epidemics? We investigate this question using a breadth-first modeling approach involving three distinct theoretical models. First, in the context of population genetics, we show that a horizontally-transmissible element that increases fitness, such as viral DNA, spreads superexponentially through a population, more quickly than a beneficial mutation. Second, in the context of behavioral epidemiology, we show that infections that cause increased connectivity lead to superexponential fixation in the population. Third, in the context of dynamic social networks, we find that preferences for increased global infection accelerate spread and produce superexponential fixation, but preferences for local assortativity halt epidemics by disconnecting the infected from the susceptible. We conclude that the dynamics of beneficial biological and social epidemics are characterized by the rapid spread of beneficial elements, which is facilitated in biological systems by horizontal transmission and in social systems by active spreading behavior of infected individuals.


Subject(s)
Epidemics/statistics & numerical data , Genetic Fitness , Models, Genetic , Virus Diseases/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Evolution, Molecular , Genetics, Population/methods , Humans , Virus Diseases/genetics , Virus Diseases/transmission
2.
Nat Commun ; 8(1): 1361, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118345

ABSTRACT

Microbes produce metabolic resources that are important for cell growth yet leak into the environment. Other microbes can use these resources, adjust their own metabolic production accordingly, and alter the resources available for others. We analyze a model in which metabolite concentrations, production regulation, and population frequencies coevolve in the simple case of two cell types producing two metabolites. We identify three paradoxes where changes that should intuitively benefit a cell type actually harm it. For example, a cell type can become more efficient at producing a metabolite and its relative frequency can decrease-or alternatively the total population growth rate can decrease. Another paradox occurs when a cell type manipulates its counterpart's production so as to maximize its own instantaneous growth rate, only to achieve a lower final growth rate than had it not manipulated. These paradoxes highlight the complex and counterintuitive dynamics that emerge in simple microbial economies.


Subject(s)
Microbial Consortia/physiology , Models, Biological , Metabolism , Symbiosis
3.
Phys Rev E ; 95(2-1): 022130, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297917

ABSTRACT

Networks of particles connected by springs model many condensed-matter systems, from colloids interacting with a short-range potential and complex fluids near jamming, to self-assembled lattices and various metamaterials. Under small thermal fluctuations the vibrational entropy of a ground state is given by the harmonic approximation if it has no zero-frequency vibrational modes, yet such singular modes are at the epicenter of many interesting behaviors in the systems above. We consider a system of N spherical particles, and directly account for the singularities that arise in the sticky limit where the pairwise interaction is strong and short ranged. Although the contribution to the partition function from singular clusters diverges in the limit, its asymptotic value can be calculated and depends on only two parameters, characterizing the depth and range of the potential. The result holds for systems that are second-order rigid, a geometric characterization that describes all known ground-state (rigid) sticky clusters. To illustrate the applications of our theory we address the question of emergence: how does crystalline order arise in large systems when it is strongly disfavored in small ones? We calculate the partition functions of all known rigid clusters up to N≤21 and show the cluster landscape is dominated by hyperstatic clusters (those with more than 3N-6 contacts); singular and isostatic clusters are far less frequent, despite their extra vibrational and configurational entropies. Since the most hyperstatic clusters are close to fragments of a close-packed lattice, this underlies the emergence of order in sticky-sphere systems, even those as small as N=10.

4.
Soft Matter ; 12(18): 4123-8, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27063779

ABSTRACT

Obtaining general relations between macroscopic properties of random assemblies, such as density, and the microscopic properties of their constituent particles, such as shape, is a foundational challenge in the study of amorphous materials. By leveraging existing understanding of the random packing of spherical particles, we estimate the random packing density for all sufficiently spherical shapes. Our method uses the ensemble of random packing configurations of spheres as a reference point for a perturbative calculation, which we carry to linear order in the deformation. A fully analytic calculation shows that all sufficiently spherical shapes pack more densely than spheres. Additionally, we use simulation data for spheres to calculate numerical estimates for nonspherical particles and compare these estimates to simulations.

5.
Phys Rev E ; 93(1): 012902, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871138

ABSTRACT

The jamming transition of particles with finite-range interactions is characterized by a variety of critical phenomena, including power-law distributions of marginal contacts. We numerically study a recently proposed simple model of jamming, which is conjectured to lie in the same universality class as the jamming of spheres in all dimensions. We extract numerical estimates of the critical exponents, θ=0.451±0.006 and γ=0.404±0.004, that match the exponents observed in sphere packing systems. We analyze finite-size scaling effects that manifest in a subcritical cutoff regime and size-independent but protocol-dependent scaling curves. Our results support the conjectured link with sphere jamming, provide more precise measurements of the critical exponents than previously reported, and shed light on the finite-size scaling behavior of continuous constraint satisfiability transitions.

6.
Article in English | MEDLINE | ID: mdl-25215696

ABSTRACT

Maximally random jammed (MRJ) sphere packing is a prototypical example of a system naturally poised at the margin between underconstraint and overconstraint. This marginal stability has traditionally been understood in terms of isostaticity, the equality of the number of mechanical contacts and the number of degrees of freedom. Quasicontacts, pairs of spheres on the verge of coming in contact, are irrelevant for static stability, but they come into play when considering dynamic stability, as does the distribution of contact forces. We show that the effects of marginal dynamic stability, as manifested in the distributions of quasicontacts and weak contacts, are consequential and nontrivial. We study these ideas first in the context of MRJ packing of d-dimensional spheres, where we show that the abundance of quasicontacts grows at a faster rate than that of contacts. We reexamine a calculation of Jin et al. [Phys. Rev. E 82, 051126 (2010)], where quasicontacts were originally neglected, and we explore the effect of their inclusion in the calculation. This analysis yields an estimate of the asymptotic behavior of the packing density in high dimensions. We argue that this estimate should be reinterpreted as a lower bound. The latter part of the paper is devoted to Bravais lattice packings that possess the minimum number of contacts to maintain mechanical stability. We show that quasicontacts play an even more important role in these packings. We also show that jammed lattices are a useful setting for studying the Edwards ensemble, which weights each mechanically stable configuration equally and does not account for dynamics. This ansatz fails to predict the power-law distribution of near-zero contact forces, P(f)∼f(θ).


Subject(s)
Models, Theoretical , Magnetic Phenomena
7.
Article in English | MEDLINE | ID: mdl-23848806

ABSTRACT

We present an efficient Monte Carlo method for the lattice sphere packing problem in d dimensions. We use this method to numerically discover de novo the densest lattice sphere packing in dimensions 9 through 20. Our method goes beyond previous methods, not only in exploring higher dimensions but also in shedding light on the statistical mechanics underlying the problem in question. We observe evidence of a phase transition in the thermodynamic limit d→∞. In the dimensions explored in the present work, the results are consistent with a first-order crystallization transition but leave open the possibility that a glass transition is manifested in higher dimensions.

8.
Article in English | MEDLINE | ID: mdl-24483429

ABSTRACT

We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036703, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517621

ABSTRACT

We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well-studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of asphericity, providing an atlas of crystal structures that might be observed in systems of nanoparticles with tetrahedral symmetry.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 2): 056707, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21230619

ABSTRACT

The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.


Subject(s)
Models, Theoretical , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...