Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hyperthermia ; 38(1): 511-522, 2021.
Article in English | MEDLINE | ID: mdl-33784924

ABSTRACT

Objective: In magnetic particle hyperthermia, a promising least-invasive cancer treatment, malignant regions in proximity with magnetic nanoparticles undergo heat stress, while unavoidably surrounding healthy tissues may also suffer from heat either directly or indirectly by the induced eddy currents, due to the developed electric fields as well. Here, we propose a facile upgrade of a typical magnetic particle hyperthermia protocol, to selectively mitigate eddy currents' heating without compromising the beneficial role of heating in malignant regions.Method: The key idea is to apply the external magnetic field intermittently (in an ON/OFF pulse mode), instead of the continuous field mode typically applied. The parameters of the intermittent field mode, such as time intervals (ON time: 25-100 s, OFF time: 50-200 s, Duty Cycle:16-100%) and field amplitude (30-70 mT) are optimized based on evaluation on healthy tissue and cancer tissue phantoms. The goal is to sustain in cancer tissue phantom the maximum temperature increase (preferably within 4-8°C above body temperature of 37°C), while in the healthy tissue phantom temperature variation is suppressed far below the 4°C dictating the eddy current mitigation.Results: Optimum conditions of intermittent field (ON/OFF: 50/100 in s, Duty Cycle: 33%, magnetic field: 45mT) are then examined in ex-vivo samples verifying the successful suppression of eddy currents. Simultaneously, a well-elaborated theoretical approach provides a rapid calculation of temperature increase and, furthermore, the ability to quickly simulate a variety of duty cycle times and field controls may save experimental time.Conclusion: Eventually, the application of an intermittent field mode in a magnetic particle hyperthermia protocol, succeeds in eddy current mitigation in surrounding tissues and allows for the application of larger field amplitudes that may augment hyperthermia efficiency without objecting typical biomedical applicability field constraints such as Brezovich criterion.


Subject(s)
Hyperthermia, Induced , Humans , Hyperthermia , Magnetic Fields , Magnetics , Temperature
2.
Nanoscale Adv ; 3(9): 2516-2528, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134160

ABSTRACT

Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.

3.
ACS Appl Mater Interfaces ; 12(25): 28520-28531, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32379412

ABSTRACT

A millifluidic reactor with a 0.76 mm internal diameter was utilized for the synthesis of monodisperse, high magnetic moment, iron carbide (FexCy) nanoparticles by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in 1-octadecene in the presence of oleylamine at 22 min nominal residence time. The effect of reaction conditions (temperature and pressure) on the size, morphology, crystal structure, and magnetic properties of the nanoparticles was investigated. The system developed facilitated the thermal decomposition of precursor at reaction conditions (up to 265 °C and 4 bar) that cannot be easily achieved in conventional batch reactors. The degree of carbidization was enhanced by operating at elevated temperature and pressure. The nanoparticles synthesized in the flow reactor had size 9-18 nm and demonstrated high saturation magnetization (up to 164 emu/gFe). They further showed good stability against oxidation after 2 months of exposure in air, retaining good saturation magnetization values with a change of no more than 10% of the initial value. The heating ability of the nanoparticles in an alternating magnetic field was comparable with other ferrites reported in the literature, having intrinsic loss power values up to 1.52 nHm2 kg-1.

4.
Materials (Basel) ; 12(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438616

ABSTRACT

A study of the influence of polyols, with or without an additional reducing agent, on crystallites' size and magnetic features in Fe3O4 nanoparticles and on their performance in magnetic particle hyperthermia is presented. Three different samples were synthesized by thermal decomposition of an iron precursor in the presence of NaBH4 in a polyol. So far, triethylene glycol (TrEG) and polyethylene glycol (PEG 1000 and PEG 8000) that exhibit different physical and chemical properties have been used in order to investigate the influence of the polyols on the composition and the size of the NPs. Additionally, the presence of a different reducing agent such as hydrazine, has been tested for comparison reasons in case of TrEG. Three more samples were prepared solvothermally by using the same polyols, which led to different crystallite sizes. The magnetic core of the nanoparticles was characterized, while the presence of the surfactant was studied qualitatively and quantitatively. Concerning the magnetic features, all samples present magnetic hysteresis including remanence and coercivity revealing that they are thermally blocked at room temperature. Finally, a study on the influence of the MNPs heating efficiency from their size and the field amplitude was accomplished. In our polyol process the main idea was to control the specific loss power (SLP) values by the nanoparticles' size and consequently by the polyol itself.

5.
Ann Biomed Eng ; 46(12): 1975-1987, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30076502

ABSTRACT

Murine tumor models have played a fundamental role in the development of novel therapeutic interventions and are currently widely used in translational research. Specifically, strategies that aim at reducing inter-animal variability of tumor size in transplantable mouse tumor models are of particular importance. In our approach, we used magnetic nanoparticles to label and manipulate colon cancer cells for the improvement of the standard syngeneic subcutaneous mouse tumor model. Following subcutaneous injection on the scruff of the neck, magnetically-tagged implanted cancer cells were manipulated by applying an external magnetic field towards localized tumor formation. Our data provide evidence that this approach can facilitate the formation of localized tumors of similar shape, reducing thereby the tumor size's variability. For validating the proof-of-principle, a low-dose of 5-FU was administered in small animal groups as a representative anticancer therapy. Under these experimental conditions, the 5-FU-induced tumor growth inhibition was statistically significant only after the implementation of the proposed method. The presented approach is a promising strategy for studying accurately therapeutic interventions in subcutaneous experimental solid tumor models allowing for the detection of statistically significant differences between smaller experimental groups.


Subject(s)
Disease Models, Animal , Nanoparticles/administration & dosage , Neoplasm Transplantation/methods , Animals , Antimetabolites, Antineoplastic/therapeutic use , Cell Line, Tumor , Fluorouracil/therapeutic use , Magnetic Phenomena , Male , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
6.
Int J Hyperthermia ; 32(7): 778-85, 2016 11.
Article in English | MEDLINE | ID: mdl-27442884

ABSTRACT

The present study examines the heating efficiency of a combination of manganese or cobalt ferrites in a binary (Co- or Mn-) ferrite nanoparticle form with magnetite, covered with citric acid to improve biocompatibility. The nanoparticle synthesis is based on the aqueous co-precipitation of proper salts, a facile, low-cost, environmentally friendly and high yield synthetic approach. By detailed structural and magnetic characterisation, the direct influence of structural and magnetic features on magnetic hyperthermia concludes to optimum heating efficiency. At a second stage, best performing magnetic nanoparticles undergo in vitro testing in three cell lines: one cancer cell line and two reference healthy cell lines. Both binary ferrite (MnFe2O4/Fe3O4 and CoFe2O4/Fe3O4) appear to be internalised and well tolerated by the cells while a versatile hyperthermia protocol is attempted in an effort to further improve their in vitro performance. Within this protocol, hyperthermia sequences are split in two runs with an intermediate 48 h time interval cell incubation stage while in each run a variable field mode (single or multiple pulses) is applied. Single-pulse field mode represents a typical hyperthermia application scheme where cells undergo the thermal shock continuously. On the other hand multiple-pulses mode refers to multiple, much shorter in duration AC field changes (field ON/OFFs), at each hyperthermia run, resulting eventually in high heating rate and much more harmful cell treatment. Consequently, we propose a novel series of improved performance heat mediators based on ferrite structures which show maximum efficiency at cancer cells when combined with a versatile multiple-pulse hyperthermia module.


Subject(s)
Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Osteosarcoma/chemistry , Humans , Hyperthermia, Induced/methods , Temperature
7.
J Mater Chem B ; 2(47): 8390-8398, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-32262009

ABSTRACT

Manganese ferrite nanoparticles were synthesized by a facile, low-cost, environmentally friendly and high yield methodology based on the aqueous co-precipitation of proper salts. Firstly, structural, morphological and magnetic characterization schemes were performed to determine crucial factors for optimizing their heating potential, such as size, polydispersity, saturation magnetization and coercivity. In an effort to simulate the in vivo environment of animal tissue phantoms and study the thermal heating effects resulting from Brownian motion and hysteresis losses, nanoparticles at various concentrations were embedded in aqueous media of varying agar concentration. During the in vitro application healthy cells (primary bone marrow-derived osteoblasts and 3T3-L1 fibroblast-like preadipocytes) and human osteosarcoma Saos-2 cells were incubated with manganese ferrite nanoparticles. The heating profile of the particles was studied at different concentrations and in correlation with their potential cytotoxic effect. Our results revealed concentration dependent cytotoxicity profile and uptake efficiency together with variable specific loss power values yet with fast thermal response, opening novel pathways in material selection as hyperthermia agents.

8.
Materials (Basel) ; 6(4): 1360-1376, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-28809214

ABSTRACT

In this study, the effect of preparation route of magnetic graphene oxide (mGO) on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of mGO was achieved both with (i) impregnation method (mGOi nanoparticles), and (ii) co-precipitation (mGOp nanoparticles). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved revealing many possible interactions/forces of dye-composite system. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic nanocomposites. The adsorption evaluation of the magnetic nanoparticles presented higher adsorption capacity of mGOp derivative (188 mg/g) and lower of mGOi (164 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔH°, ΔG° and ΔS°).

SELECTION OF CITATIONS
SEARCH DETAIL
...