Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 193(1): 721-735, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37103588

ABSTRACT

Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Tylenchoidea , Animals , Arabidopsis/physiology , Cyclic GMP-Dependent Protein Kinases/metabolism , Lectins/metabolism , Hydrogen Peroxide/metabolism , Tylenchoidea/physiology , Solanum lycopersicum/genetics , Receptors, Mitogen/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Diseases/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/metabolism
2.
Plants (Basel) ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771723

ABSTRACT

The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects.

3.
BMC Plant Biol ; 23(1): 22, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631779

ABSTRACT

BACKGROUND: Cowpea (Vigna unguiculata) is a crucial crop for regions of the world that are prone to both heat and drought; however, the phytotoxic cowpea aphid (Aphis craccivora) impairs plant physiology at low population levels. Both antibiotic and antixenotic forms of resistance to the aphid have been mapped to two quantitative trait loci (QTLs) and near isogenic lines (NILs). The molecular mechanism for this resistance response remains unknown. RESULTS: To understand the genes underlying susceptibility and resistance, two cowpea lines with shared heritage were infested along a time course and characterized for transcriptome variation. Aphids remodeled cowpea development and signaling relative to host plant resistance and the duration of feeding, with resource acquisition and mobilization determining, in part, susceptibility to aphid attack. Major differences between the susceptible and resistant cowpea were identified including two regions of interest housing the most genetic differences between the lines. Candidate genes enabling aphid resistance include both conventional resistance genes (e.g., leucine rich repeat protein kinases) as well as multiple novel genes with no known orthologues. CONCLUSIONS: Our results demonstrate that feeding by the cowpea aphid globally remodels the transcriptome of cowpea, but how this occurs depends on both the duration of feeding and host-plant resistance. Constitutive expression profiles of the resistant genotype link aphid resistance to a finely-tuned resource management strategy that ultimately reduces damage (e.g., chlorosis) and delays cell turnover, while impeding aphid performance. Thus, aphid resistance in cowpea is a complex, multigene response that involves crosstalk between primary and secondary metabolism.


Subject(s)
Aphids , Vigna , Animals , Vigna/genetics , Aphids/physiology , Phenotype , Quantitative Trait Loci , Gene Expression Profiling
4.
J Gen Virol ; 103(5)2022 05.
Article in English | MEDLINE | ID: mdl-35550022

ABSTRACT

Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.


Subject(s)
Endogenous Retroviruses , Nematoda , Animals , Endogenous Retroviruses/genetics , Glycoproteins/genetics , Retroelements , Terminal Repeat Sequences
6.
Front Plant Sci ; 11: 605, 2020.
Article in English | MEDLINE | ID: mdl-32499809

ABSTRACT

Cowpea, Vigna unguiculata, is a crop that is essential to semiarid areas of the world like Sub-Sahara Africa. Cowpea is highly susceptible to cowpea aphid, Aphis craccivora, infestation that can lead to major yield losses. Aphids feed on their host plant by inserting their hypodermal needlelike flexible stylets into the plant to reach the phloem sap. During feeding, aphids secrete saliva, containing effector proteins, into the plant to disrupt plant immune responses and alter the physiology of the plant to their own advantage. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to identify the salivary proteome of the cowpea aphid. About 150 candidate proteins were identified including diacetyl/L-xylulose reductase (DCXR), a novel enzyme previously unidentified in aphid saliva. DCXR is a member of short-chain dehydrogenases/reductases with dual enzymatic functions in carbohydrate and dicarbonyl metabolism. To assess whether cowpea aphid DCXR (AcDCXR) has similar functions, recombinant AcDCXR was purified and assayed enzymatically. For carbohydrate metabolism, the oxidation of xylitol to xylulose was tested. The dicarbonyl reaction involved the reduction of methylglyoxal, an α-ß-dicarbonyl ketoaldehyde, known as an abiotic and biotic stress response molecule causing cytotoxicity at high concentrations. To assess whether cowpea aphids induce methylglyoxal in plants, we measured methylglyoxal levels in both cowpea and pea (Pisum sativum) plants and found them elevated transiently after aphid infestation. Agrobacterium-mediated transient overexpression of AcDCXR in pea resulted in an increase of cowpea aphid fecundity. Taken together, our results indicate that AcDCXR is an effector with a putative ability to generate additional sources of energy to the aphid and to alter plant defense responses. In addition, this work identified methylglyoxal as a potential novel aphid defense metabolite adding to the known repertoire of plant defenses against aphid pests.

7.
Bio Protoc ; 10(20): e3795, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33659449

ABSTRACT

Aphids are a serious pest of crops across the world. Aphids feed by inserting their flexible hypodermal needlelike mouthparts, or stylets, into their host plant tissues. They navigate their way to the phloem where they feed on its sap causing little mechanical damage to the plant. Additionally, while feeding, aphids secrete proteinaceous effectors in their saliva to alter plant metabolism and disrupt plant defenses to gain an advantage over the plant. Even with these arsenals to overcome plant responses, plants have evolved ways to detect and counter with defense responses to curtail aphid infestation. One of such response of cowpea to cowpea aphid infestation, is accumulation of the metabolite methylglyoxal. Methylglyoxal is an α,ß-dicarbonyl ketoaldehyde that is toxic at high concentrations. Methylglyoxal levels increase modestly after exposure to a number of different abiotic and biotic stresses and has been shown to act as an emerging defense signaling molecule at low levels. Here we describe a protocol to measure methylglyoxal in cowpea leaves after cowpea aphid infestation, by utilizing a perchloric acid extraction process. The extracted supernatant was neutralized with potassium carbonate, and methylglyoxal was quantified through its reaction with N-acetyl-L-cysteine to form N-α-acetyl-S-(1-hydroxy-2-oxo-prop-1-yl)cysteine, a product that is quantified spectrophotometrically.

8.
Phytopathology ; 109(12): 1988-1996, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31613704

ABSTRACT

Plant infections by plant-parasitic nematodes (PPNs) continue to be one of the major limitations in agricultural systems. Root-knot nematodes (RKNs), belonging to the genus Meloidogyne, are one of the most important groups of PPNs worldwide. Their wide host range combined with ubiquitous presence, continues to provide challenges for their control and breeding for resistance. Although resistance to RKNs has been identified, incorporation of these resistances into crops and durability of the resistance remains challenging. In addition, progress in cloning of RKN resistance genes has been dismal. Recent identification of pattern-triggered immunity in roots against nematodes, an ascaroside as a nematode-associated molecular pattern (NAMP) and the discovery of a NAMP plant receptor, provide tools and opportunities to develop durable host resistance against nematodes including RKNs.


Subject(s)
Crops, Agricultural , Tylenchoidea , Animals , Crops, Agricultural/parasitology , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Roots/parasitology , Tylenchoidea/physiology
9.
New Phytol ; 221(3): 1518-1528, 2019 02.
Article in English | MEDLINE | ID: mdl-30357852

ABSTRACT

We demonstrated previously that expression of Macrosiphum euphorbiae salivary protein Me10 enhanced aphid reproduction on its host tomato (Solanum lycopersicum). However, the mechanism of action of Me10 remained elusive. To confirm the secretion of Me10 by the aphid into plant tissues, we produced Me10 polyclonal antibodies. To identify the plant targets of Me10, we developed a tomato immune induced complementary DNA yeast two-hybrid library and screened it with Me10 as bait. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays were performed to validate one of the interactions in planta, and virus-induced gene silencing was used for functional characterization in tomato. We demonstrated that Me10 is secreted into the plant tissues and interacts with tomato 14-3-3 isoform 7 (TFT7) in yeast. Immunoprecipitation assays confirmed that Me10 and its homologue in Aphis gossypii, Ag10k, interact with TFT7 in planta. Further, BiFC revealed that Me10 interaction with TFT7 occurs in the plant cell cytoplasm. While silencing of TFT7 in tomato leaves did not affect tomato susceptibility to M. euphorbiae, it enhanced longevity and fecundity of A. gossypii, the non-host aphid. Our results suggest the model whereby TFT7 plays a role in aphid resistance in tomato and effectors of the Me10/Ag10k family interfere with TFT7 function during aphid infestation.


Subject(s)
14-3-3 Proteins/metabolism , Aphids/metabolism , Disease Resistance , Plant Diseases/parasitology , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Animals , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Protein Binding , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism
10.
BMC Genomics ; 19(1): 239, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29625550

ABSTRACT

BACKGROUND: Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. RESULTS: This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. CONCLUSIONS: This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs.


Subject(s)
Arabidopsis Proteins/classification , Arabidopsis/enzymology , Plant Proteins/classification , Protein Kinases/classification , Receptors, Cell Surface/classification , Solanum lycopersicum/enzymology , Amino Acid Motifs , Aquilegia/enzymology , Aquilegia/genetics , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Catalytic Domain , Chromosome Mapping , Solanum lycopersicum/genetics , Multigene Family , Oryza/enzymology , Oryza/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Terminology as Topic
11.
PLoS One ; 13(3): e0193239, 2018.
Article in English | MEDLINE | ID: mdl-29596449

ABSTRACT

The potato aphid, Macrosiphum euphorbiae, is an important agricultural pest that causes economic losses to potato and tomato production. To establish the transcriptome for this aphid, RNA-Seq libraries constructed from aphids maintained on tomato plants were used in Illumina sequencing generating 52.6 million 75-105 bp paired-end reads. The reads were assembled using Velvet/Oases software with SEED preprocessing resulting in 22,137 contigs with an N50 value of 2,003bp. After removal of contigs from tomato host origin, 20,254 contigs were annotated using BLASTx searches against the non-redundant protein database from the National Center for Biotechnology Information (NCBI) as well as IntereProScan. This identified matches for 74% of the potato aphid contigs. The highest ranking hits for over 12,700 contigs were against the related pea aphid, Acyrthosiphon pisum. Gene Ontology (GO) was used to classify the identified M. euphorbiae contigs into biological process, cellular component and molecular function. Among the contigs, sequences of microbial origin were identified. Sixty five contigs were from the aphid bacterial obligate endosymbiont Buchnera aphidicola origin and two contigs had amino acid similarities to viruses. The latter two were named Macrosiphum euphorbiae virus 2 (MeV-2) and Macrosiphum euphorbiae virus 3 (MeV-3). The highest sequence identity to MeV-2 had the Dysaphis plantaginea densovirus, while to MeV-3 is the Hubei sobemo-like virus 49. Characterization of MeV-2 and MeV-3 indicated that both are transmitted vertically from adult aphids to nymphs. MeV-2 peptides were detected in the aphid saliva and only MeV-2 and not MeV-3 nucleic acids were detected inside tomato leaves exposed to virus-infected aphids. However, MeV-2 nucleic acids did not persist in tomato leaf tissues, after clearing the plants from aphids, indicating that MeV-2 is likely an aphid virus.


Subject(s)
Aphids/genetics , Aphids/virology , Gene Expression Profiling , Plant Viruses/genetics , Plant Viruses/isolation & purification , Sequence Analysis , Amino Acid Sequence , Animals , Gene Ontology , Molecular Sequence Annotation , Plant Viruses/physiology , Viral Proteins/chemistry , Viral Proteins/genetics
12.
Mol Plant Microbe Interact ; 30(7): 515-516, 2017 07.
Article in English | MEDLINE | ID: mdl-28398839

ABSTRACT

Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Food Supply , Translational Research, Biomedical/methods , Biotechnology/methods , Climate Change , Crops, Agricultural/microbiology , Crops, Agricultural/parasitology , Humans , Plant Diseases/microbiology , Plant Diseases/parasitology
13.
Front Plant Sci ; 7: 1142, 2016.
Article in English | MEDLINE | ID: mdl-27536306

ABSTRACT

Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues.

14.
Sci Rep ; 6: 29554, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27412821

ABSTRACT

Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22(-333)::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/immunology , Imines/pharmacology , Phenols/pharmacology , Plant Diseases/immunology , Plant Diseases/prevention & control , Solanum lycopersicum/drug effects , Solanum lycopersicum/immunology , Arabidopsis Proteins/metabolism , Calmodulin/metabolism , Disease Resistance , Gene Expression Regulation, Plant/drug effects , Hormesis/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Plant Diseases/microbiology , Plant Immunity , Pseudomonas syringae/pathogenicity , Transcriptome/drug effects
15.
Plant Physiol ; 171(3): 2211-22, 2016 07.
Article in English | MEDLINE | ID: mdl-27208261

ABSTRACT

Somatic embryogenesis receptor kinases (SERKs) are transmembrane receptors involved in plant immunity. Tomato (Solanum lycopersicum) carries three SERK members. One of these, SlSERK1, is required for Mi-1.2-mediated resistance to potato aphids (Macrosiphum euphorbiae). Mi-1.2 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that in addition to potato aphids confers resistance to two additional phloem-feeding insects and to root-knot nematodes (Meloidogyne spp.). How SlSERK1 participates in Mi-1.2-mediated resistance is unknown, and no Mi-1.2 cognate pest effectors have been identified. Here, we study the mechanistic involvement of SlSERK1 in Mi-1.2-mediated resistance. We show that potato aphid saliva and protein extracts induce the Mi-1.2 defense marker gene SlWRKY72b, indicating that both saliva and extracts contain a Mi-1.2 recognized effector. Resistant tomato cultivar Motelle (Mi-1.2/Mi-1.2) plants overexpressing SlSERK1 were found to display enhanced resistance to potato aphids. Confocal microscopy revealed that Mi-1.2 localizes at three distinct subcellular compartments: the plasma membrane, cytoplasm, and nucleus. Coimmunoprecipitation experiments in these tomato plants and in Nicotiana benthamiana transiently expressing Mi-1.2 and SlSERK1 showed that Mi-1.2 and SlSERK1 colocalize only in a microsomal complex. Interestingly, bimolecular fluorescence complementation analysis showed that the interaction of Mi-1.2 and SlSERK1 at the plasma membrane distinctively changes in the presence of potato aphid saliva, suggesting a model in which a constitutive complex at the plasma membrane participates in defense signaling upon effector binding.


Subject(s)
Aphids/chemistry , Cell Membrane/metabolism , Insect Proteins/pharmacology , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Animals , Aphids/physiology , Host-Parasite Interactions , Solanum lycopersicum/drug effects , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Protein Kinases/genetics , Protein Kinases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saliva/chemistry , Nicotiana/genetics
16.
New Phytol ; 211(1): 276-87, 2016 07.
Article in English | MEDLINE | ID: mdl-26892116

ABSTRACT

Root-knot nematodes (RKNs; Meloidogyne spp.) are plant parasites with a broad host range causing great losses worldwide. To parasitize their hosts, RKNs establish feeding sites in roots known as giant cells. The majority of work studying plant-RKN interactions in susceptible hosts addresses establishment of the giant cells and there is limited information on the early defense responses. Here we characterized early defense or pattern-triggered immunity (PTI) against RKNs in Arabidopsis thaliana. To address PTI, we evaluated known canonical PTI signaling mutants with RKNs and investigated the expression of PTI marker genes after RKN infection using both quantitative PCR and ß-glucuronidase reporter transgenic lines. We showed that PTI-compromised plants have enhanced susceptibility to RKNs, including the bak1-5 mutant. BAK1 is a common partner of distinct receptors of microbe- and damage-associated molecular patterns. Furthermore, our data indicated that nematode recognition leading to PTI responses involves camalexin and glucosinolate biosynthesis. While the RKN-induced glucosinolate biosynthetic pathway was BAK1-dependent, the camalexin biosynthetic pathway was only partially dependent on BAK1. Combined, our results indicate the presence of BAK1-dependent and -independent PTI against RKNs in A. thaliana, suggesting the existence of diverse nematode recognition mechanisms.


Subject(s)
Arabidopsis/immunology , Arabidopsis/parasitology , Pathogen-Associated Molecular Pattern Molecules/immunology , Tylenchoidea/pathogenicity , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Glucosinolates/metabolism , Host-Parasite Interactions/immunology , Indoles/metabolism , Mutation , Plant Immunity , Plant Roots/parasitology , Plants, Genetically Modified , Protein Kinases/immunology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Thiazoles/metabolism , Transcription Factors/genetics , Tylenchoidea/physiology
17.
J Gen Virol ; 97(5): 1261-1271, 2016 05.
Article in English | MEDLINE | ID: mdl-26822322

ABSTRACT

A virus with a large genome was identified in the transcriptome of the potato aphid (Macrosiphum euphorbiae) and was named Macrosiphum euphorbiae virus 1 (MeV-1). The MeV-1 genome is 22 780 nt in size, including 3' and 5' non-coding regions, with a single large ORF encoding a putative polyprotein of 7333 aa. The C-terminal region of the predicted MeV-1 polyprotein contained sequences with similarities to helicase, methyltransferase and RNA-dependent RNA polymerase (RdRp) motifs, while the N-terminal region lacked any motifs including structural proteins. Phylogenetic analysis of the helicase placed MeV-1 close to pestiviruses, while the RdRp region placed it close to pestiviruses and flaviviruses, suggesting MeV-1 has a positive-polarity ssRNA genome and is a member of the family Flaviviridae. Since the MeV-1 genome is predicted to contain a methyltransferase, a gene present typically in flaviviruses but not pestiviruses, MeV-1 is likely a member of the genus Flavivirus. MeV-1 was present in nymphal and adult stages of the aphid, aphid saliva and plant tissues fed upon by aphids. However, the virus was unable to multiply and spread in tomato plants. In addition, dsRNA, the replication intermediate of RNA viruses, was isolated from virus-infected M. euphorbiae and not from tomato plants infested with the aphid. Furthermore, nymphs laid without exposure to infected plants harboured the virus, indicating that MeV-1 is an aphid-infecting virus likely transmitted transovarially. The virus was present in M. euphorbiae populations from Europe but not from North America and was absent in all other aphid species tested.


Subject(s)
Aphids/virology , Insect Viruses/genetics , Insect Viruses/isolation & purification , Animals , Larva , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Virus Replication/physiology
18.
Plant Physiol ; 170(1): 444-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26530314

ABSTRACT

Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/immunology , Hormesis , Thiazolidines/pharmacology , Arabidopsis/microbiology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Chlorobenzoates/chemistry , Chlorobenzoates/pharmacology , Dose-Response Relationship, Drug , Gene Expression Regulation, Plant/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Peronospora/pathogenicity , Plant Diseases/microbiology , Plant Roots/drug effects , Plant Roots/physiology , Plants, Genetically Modified , Structure-Activity Relationship , Thiazolidines/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology
19.
J Integr Plant Biol ; 58(4): 350-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26467026

ABSTRACT

Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.


Subject(s)
Diptera/physiology , Hemiptera/physiology , Host-Pathogen Interactions/immunology , Animals , Models, Biological , Receptors, Cell Surface/metabolism , Signal Transduction
20.
J Proteome Res ; 14(4): 1762-78, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25722084

ABSTRACT

Aphids deliver saliva into plants and acquire plant sap for their nourishment using a specialized mouthpart or stylets. Aphid saliva is of great importance because it contains effectors that are involved in modulating host defense and metabolism. Although profiling aphid salivary glands and identifying secreted proteins have been successfully used, success in direct profiling of aphid saliva have been limited due to scarcity of saliva collected in artificial diets. Here we present the use of a neurostimulant, resorcinol, for inducing aphid salivation. Saliva of potato aphids (Macrosiphum euphorbiae), maintained on tomato, was collected in resorcinol diet. Salivary proteins were identified using mass spectrometry and compared with the existing M. euphorbiae salivary proteome collected in water. Comparative analysis was also performed with existing salivary proteomes from additional aphid species. Most of the proteins identified in the resorcinol diet were also present in the water diet and represented proteins with a plethora of functions in addition to a large number of unknowns. About half of the salivary proteins were not predicted for secretion or had canonical secretion signal peptides. We also analyzed the phosphorylation states of M. euphorbiae salivary proteins and identified three known aphid effectors, Me_WB01635/Mp1, Me10/Mp58, and Me23 that carry phosphorylation marks. In addition to insect proteins, tomato host proteins were also identified in aphid saliva. Our results indicate that aphid saliva is complex and provides a rich resource for functional characterization of effectors.


Subject(s)
Aphids/metabolism , Insect Proteins/metabolism , Phosphoproteins/metabolism , Proteome/genetics , Resorcinols/pharmacology , Saliva/metabolism , Solanum lycopersicum/parasitology , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Computational Biology , Gene Ontology , Insect Proteins/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Phosphoproteins/genetics , Salivation/drug effects , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...