Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 61(13): 1260-1272, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35748495

ABSTRACT

Epigenetic reader domains regulate chromatin structure and modulate gene expression through the recognition of post-translational modifications on histones. Recently, reader domains have also been found to harbor double-stranded (ds) DNA-binding activity, which is as functionally critical as histone association. Here, we explore the dsDNA recognition of the N-terminal bromodomain of the bromodomain and extra-terminal (BET) protein, BRD4. Using protein-observed 19F NMR, 1H-15N HSQC NMR, electrophoretic mobility shift assays (EMSA), and competitive-inhibition assays, we establish the binding surface of dsDNA and find it to be largely overlapping with the acetylated histone (KAc)-binding site. Rather than engaging in electrostatic contacts, we find dsDNA to interact competitively within the KAc-binding pocket. These interactions are distinct from the highly homologous BET bromodomain, BRDT. Nine additional bromodomains have also been characterized for interacting with dsDNA, including tandem BET bromodomains. Together, these studies help establish a binding model for dsDNA interactions with BRD4 bromodomains and elucidate the chromatin-recognition mechanisms of the BRD4 protein for regulating gene expression.


Subject(s)
Histones , Nuclear Proteins , Chromatin , DNA , Histones/metabolism , Nuclear Proteins/metabolism , Transcription Factors/chemistry
2.
ChemMedChem ; 17(1): e202100407, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34932262

ABSTRACT

Inhibitors of Bromodomain and Extra Terminal (BET) proteins are investigated for various therapeutic indications, but selectivity for BRD2, BRD3, BRD4, BRDT and their respective tandem bromodomains BD1 and BD2 remains suboptimal. Here we report selectivity-focused structural modifications of previously reported dihydropyridine lactam 6 by changing linker length and linker type of the lactam side chain in efforts to engage the unique arginine 54 (R54) residue in BRDT-BD1 to achieve BRDT-selective affinity. We found that the analogs were highly selective for BET bromodomains, and generally more selective for the first (BD1) and second (BD2) bromodomains of BRD4 rather than for those of BRDT. Based on AlphaScreen and BromoScan results and on crystallographic data for analog 10 j, we concluded that the lack of selectivity for BRDT is most likely due to the high flexibility of the protein and the unfavorable trajectory of the lactam side chain that do not allow interaction with R54. A 15-fold preference for BD2 over BD1 in BRDT was observed for analogs 10 h and 10 m, which was supported by protein-based 19 F NMR experiments with a BRDT tandem bromodomain protein construct.


Subject(s)
Dihydropyridines/pharmacology , Lactams/pharmacology , Nuclear Proteins/antagonists & inhibitors , Dihydropyridines/chemistry , Dose-Response Relationship, Drug , Humans , Lactams/chemistry , Molecular Structure , Nuclear Proteins/metabolism , Structure-Activity Relationship
3.
J Med Chem ; 64(14): 10102-10123, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34255515

ABSTRACT

CREBBP (CBP/KAT3A) and its paralogue EP300 (KAT3B) are lysine acetyltransferases (KATs) that are essential for human development. They each comprise 10 domains through which they interact with >400 proteins, making them important transcriptional co-activators and key nodes in the human protein-protein interactome. The bromodomains of CREBBP and EP300 enable the binding of acetylated lysine residues from histones and a number of other important proteins, including p53, p73, E2F, and GATA1. Here, we report a work to develop a high-affinity, small-molecule ligand for the CREBBP and EP300 bromodomains [(-)-OXFBD05] that shows >100-fold selectivity over a representative member of the BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon cancer cells results in lowered levels of c-Myc and a reduction in H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2), the inhibition of the CREBBP/EP300 bromodomain results in the enhanced stabilization of HIF-1α.


Subject(s)
Benzodiazepinones/pharmacology , CREB-Binding Protein/antagonists & inhibitors , Drug Design , E1A-Associated p300 Protein/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Benzodiazepinones/chemical synthesis , Benzodiazepinones/chemistry , CREB-Binding Protein/metabolism , Dose-Response Relationship, Drug , E1A-Associated p300 Protein/metabolism , HCT116 Cells , Humans , Ligands , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
4.
NPJ Parkinsons Dis ; 7(1): 52, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183676

ABSTRACT

We have developed a high-throughput drug discovery platform, measuring fluorescence resonance energy transfer (FRET) with fluorescent alpha-synuclein (αSN) biosensors, to detect spontaneous pre-fibrillar oligomers in living cells. Our two αSN FRET biosensors provide complementary insight into αSN oligomerization and conformation in order to improve the success of drug discovery campaigns for the treatment of Parkinson's disease. We measure FRET by fluorescence lifetime, rather than traditional fluorescence intensity, providing a structural readout with greater resolution and precision. This facilitates identification of compounds that cause subtle but significant conformational changes in the ensemble of oligomeric states that are easily missed using intensity-based FRET. We screened a 1280-compound small-molecule library and identified 21 compounds that changed the lifetime by >5 SD. Two of these compounds have nanomolar potency in protecting SH-SY5Y cells from αSN-induced death, providing a nearly tenfold improvement over known inhibitors. We tested the efficacy of several compounds in a primary mouse neuron assay of αSN pathology (phosphorylation of mouse αSN pre-formed fibrils) and show rescue of pathology for two of them. These hits were further characterized with biophysical and biochemical assays to explore potential mechanisms of action. In vitro αSN oligomerization, single-molecule FRET, and protein-observed fluorine NMR experiments demonstrate that these compounds modulate αSN oligomers but not monomers. Subsequent aggregation assays further show that these compounds also deter or block αSN fibril assembly.

5.
ACS Chem Biol ; 15(11): 3038-3049, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33138352

ABSTRACT

Multidomain bromodomain-containing proteins regulate gene expression via chromatin binding, interactions with the transcriptional machinery, and by recruiting enzymatic activity. Selective inhibition of members of the bromodomain and extra-terminal (BET) family is important to understand their role in disease and gene regulation, although due to the similar binding sites of BET bromodomains, selective inhibitor discovery has been challenging. To support the bromodomain inhibitor discovery process, here we report the first application of protein-observed fluorine (PrOF) NMR to the tandem bromodomains of BRD4 and BRDT to quantify the selectivity of their interactions with acetylated histones as well as small molecules. We further determine the selectivity profile of a new class of ligands, 1,4-acylthiazepanes, and find them to have ≥3-10-fold selectivity for the C-terminal bromodomain of both BRD4 and BRDT. Given the speed and lower protein concentration required over traditional protein-observed NMR methods, we envision that these fluorinated tandem proteins may find use in fragment screening and evaluating nucleosome and transcription factor interactions.


Subject(s)
Protein Interaction Mapping/methods , Small Molecule Libraries/pharmacology , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Drug Discovery/methods , Halogenation , Histones/chemistry , Histones/metabolism , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Domains/drug effects , Protein Interaction Maps/drug effects , Small Molecule Libraries/chemistry , Transcription Factors/chemistry , Transcription Factors/metabolism
6.
Chem Commun (Camb) ; 56(53): 7281-7284, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32478359

ABSTRACT

An orthogonal selectivity for distal meta-C-H activation of benzophenone is acheived by overriding the inherent proximal ortho-selectivity through a template assisted metalation approach. This strategy has been successfully utilized in Pd-catalyzed regioselective C-C and C-Si bond formation.

7.
Biochemistry ; 59(20): 1871-1880, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32356653

ABSTRACT

Gene specific recruitment of bromodomain-containing proteins to chromatin is affected by post-translational acetylation of lysine on histones. Whereas interactions of the bromodomain with acetylation patterns of native histones (H2A, H2B, H3, and H4) have been well characterized, the motif for recognition for histone variants H2A.Z I and H2A.Z II by bromodomains has yet to be fully investigated. Elucidating these molecular mechanisms is crucial for understanding transcriptional regulation in cellular processes involved in both development and disease. Here, we have used protein-observed fluorine NMR to fully characterize the affinities of H2A.Z I and II acetylation patterns for BPTF's bromodomain and found the diacetylated mark of lysine 7 and 13 on H2A.Z II to have the strongest interaction with K7ac preferentially engaging the binding site. We further examined the selectivity of H2A.Z histones against a variety of bromodomains, revealing that the bromodomain of CECR2 binds with the highest affinity and specificity for acetylated H2A.Z I over isoform II. These results support a possible role for different H2A.Z transcriptional activation mechanisms that involve recruitment of chromatin remodeling complexes.


Subject(s)
Histones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Nucleosomes/metabolism , Transcription Factors/metabolism , Acetylation , Histones/chemistry , Histones/genetics , Humans , Nucleosomes/chemistry , Protein Processing, Post-Translational , Transcription Factors/chemistry , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...