Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38421065

ABSTRACT

Hydration and, in particular, the coordination number of a metal ion is of paramount importance as it defines many of its (bio)physicochemical properties. It is not only essential for understanding its behavior in aqueous solutions but also determines the metal ion reference state and its binding energy to (bio)molecules. In this paper, for divalent metal cations Ca2+, Cd2+, Cu2+, Fe2+, Hg2+, Mg2+, Ni2+, Pb2+, and Zn2+, we compare two approaches for predicting hydration numbers: (1) a mixed explicit/continuum DFT-D3//COSMO-RS solvation model and (2) density functional theory based ab initio molecular dynamics. The former approach is employed to calculate the Gibbs free energy change for the sequential hydration reactions, starting from [M(H2O)2]2+ aqua complexes to [M(H2O)9]2+, allowing explicit water molecules to bind in the first or second coordination sphere and determining the most stable [M(H2O)n]2+ structure. In the latter approach, the hydration number is obtained by integrating the ion-water radial distribution function. With a couple of exceptions, the metal ion hydration numbers predicted by the two approaches are in mutual agreement, as well as in agreement with the experimental data.

2.
Chem Sci ; 15(2): 594-608, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179543

ABSTRACT

Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically ß-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-ß-sheet or more generally, pro-extended), and VIV(ß), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.

3.
J Phys Chem B ; 126(32): 5949-5958, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35930560

ABSTRACT

We extensively mapped energy landscapes and conformations of 22 (including three His protonation states) proteinogenic α-amino acids in trans configuration and the corresponding 484 (222) dipeptides. To mimic the environment in a protein chain, the N- and C-termini of the studied systems were capped with acetyl and N-methylamide groups, respectively. We systematically varied the main chain dihedral angles (ϕ, ψ) by 40° steps and all side chain angles by 90° or 120° steps. We optimized the molecular geometries with the GFN2-xTB semiempirical (SQM) method and performed single point density functional theory calculations at the BP86-D3/DGauss-DZVP//COSMO-RS level in water, 1-octanol, N,N-dimethylformamide, and n-hexane. For each restrained (nonequilibrium) structure, we also calculated energy gradients (in water) and natural atomic charges. The exhaustive and unprecedented QM-based sampling enabled us to construct Ramachandran plots of quantum mechanical (QM(BP86-D3)//COSMO-RS) energies calculated on SQM structures, for all 506 (484 dipeptides and 22 amino acids) studied systems. We showed how the character of an amino acid side chain influences the conformational space of single amino acids and dipeptides. With clustering techniques, we were able to identify unique minima of amino acids and dipeptides (i.e., minima on the GFN2-xTB potential energy surfaces) and analyze the distribution of their BP86-D3//COSMO-RS conformational energies in all four solvents. We also derived an empirical formula for the number of unique minima based on the overall number of rotatable bonds within each peptide. The final peptide conformer data set (PeptideCs) comprises over 400 million structures, all of them annotated with QM(BP86-D3)//COSMO-RS energies. Thanks to its completeness and unbiased nature, the PeptideCs can serve, inter alia, as a data set for the validation of new methods for predicting the energy landscapes of protein structures. This data set may also prove to be useful in the development and reparameterization of biomolecular force fields. The data set is deposited at Figshare (10.25452/figshare.plus.19607172) and can be accessed using a simple web interface at http://peptidecs.uochb.cas.cz.


Subject(s)
Dipeptides , Peptides , Amino Acids , Dipeptides/chemistry , Peptides/chemistry , Quantum Theory , Thermodynamics , Water/chemistry
4.
ChemMedChem ; 17(15): e202200152, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35560783

ABSTRACT

A rationally-designed scaffold of cyclic octapeptides composed of two units of the natural tripeptide glutathione (GSH) was optimized to strongly and selectively capture toxic lead ions (Pb(II)). Using state-of-the-art computational tools, a list of eleven plausible peptides was shortened to five analogs based on their calculated affinity to Pb(II) ions. We then synthesized and investigated them for their abilities to recover Pb-poisoned human cells. A clear pattern was observed from the in vitro detoxification results, indicating the importance of cavity size and polar moieties to enhance metal capturing. These, together with the apparent benefit of cyclizing the peptides, improved the detoxification of the two lead peptides by approximately two folds compared to GSH and the benchmark chelating agents against Pb poisoning. Moreover, the two peptides did not show any toxicity and, therefore, were thoroughly investigated to determine their potential as next-generation remedies for Pb poisoning.


Subject(s)
Glutathione , Lead , Antioxidants , Chelating Agents , Humans , Lead/toxicity
5.
Inorg Chem ; 60(24): 18620-18624, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34860512

ABSTRACT

The natural tripeptide glutathione (GSH) is a ubiquitous compound harboring various biological tasks, among them interacting with essential and toxic metal ions. Yet, although weakly binding the poisonous metal lead (Pb), GSH poorly detoxifies it. ß-Mercaptoaspartic acid is a new-to-nature novel amino acid that was found to enhance the Pb-detoxification capability of a synthetic cyclic tetrapeptide. Aiming to explore the advantages of noncanonical amino acids (ncAAs) of this nature, we studied the detoxification capabilities of GSH and three analogue peptides, each of which contains at least one ncAA that harbors both free carboxylate and thiolate groups. A thorough investigation that includes in vitro detoxification and mechanistic evaluations, metal-binding affinity, metal selectivity, and computational studies shows that these ncAAs are highly beneficial in additively enhancing Pb binding and reveals the importance of both high affinity and metal selectivity in synergistically reducing Pb toxicity in cells. Hence, such ncAAs join the chemical toolbox against Pb poisoning and pollution, enabling peptides to strongly and selectively bind the toxic metal ion.


Subject(s)
Carboxylic Acids
6.
ACS Omega ; 6(22): 14447-14457, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34124467

ABSTRACT

Examination of thermal decomposition of street samples of cocaine and methamphetamine shows that typical products detected in previous studies are accompanied by a wide palette of simple volatile compounds easily detectable by spectral techniques. These molecules increase smoke toxicity and their spectral detection can be potentially used for identification of drug samples by well-controlled laboratory thermolysis in temperature progression. In our study, street samples of cocaine and methamphetamine have been thermolyzed under vacuum over the temperature range of 350-650 °C. The volatile products (CO, HCN, CH4, C2H4, etc.) have been monitored by high-resolution Fourier-transform infrared (FTIR) spectrometry in this temperature range. The decomposition mechanism has been additionally examined theoretically by quantum-chemical calculations for the highest temperature achieved experimentally in our study and beyond. Prior to analysis, the street samples have also been characterized by FTIR, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and melting point determination.

7.
Angew Chem Int Ed Engl ; 60(22): 12381-12385, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33759306

ABSTRACT

Lead (Pb) is a ubiquitous poisonous metal, affecting the health of vast populations worldwide. Medications to treat Pb poisoning suffer from various limitations and are often toxic owing to insufficient metal selectivity. Here, we report a cyclic tetrapeptide that selectively binds Pb and eradicates its toxic effect on the cellular level, with superior potency than state-of-the-art drugs. The Pb-peptide complex is remarkably strong and was characterized experimentally and computationally. Accompanied by the lack of toxicity and enhanced stability of this peptide, these qualities indicate its merit as a potential remedy for Pb poisoning.


Subject(s)
Lead/chemistry , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Cell Survival/drug effects , HT29 Cells , Humans , Lead/metabolism , Lead/toxicity , Oligopeptides/metabolism , Peptides, Cyclic/metabolism , Protein Binding
8.
J Phys Chem B ; 125(1): 58-69, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33393778

ABSTRACT

To gain more insight into the physicochemical aspects of a protein structure from the first principles, conformational space of all 8000 "capped" tripeptides (i.e., N-Ac-X1X2X3-NH-CH3, where Xi is one of the 20 natural amino acids) was investigated computationally. An enormous dataset (denoted P-CONF_1.6M and containing close to 1 600 000 conformers in total) has been obtained by employing a composite protocol combining density functional theory, semiempirical quantum mechanics (SQM), and state-of-the-art solvation methods with 1000 K molecular dynamics (MD) used to generate initial structures (200 snapshots for each tripeptide). This allowed us to present the first rigorous QM-based glimpse at the vast conformational space spanned by small protein fragments. The same computational procedure was repeated for tripeptide fragments taken from the SCOPe database of three-dimensional protein folds, by restraining them to their geometry in a protein. Such complementary data allowed us to compare the distribution of conformational strain energies of unrestrained tripeptidic fragments "in solvent" with those in existing protein chains. Besides providing a rigorous (ab initio) proof of a few well-known concepts and hypotheses concerning protein structures, such as the distribution of (φ, ψ) angles in Ramachandran plots, we have made several observations that came as a certain surprise: (1) distribution of conformational energies does not significantly differ between the "unbiased/unrestrained" conformers obtained from MD sampling in solvent and the biased conformers, i.e., those of a given tripeptide obtained from protein structures; (2) conformational (strain) energy window up to ∼20 to 25 kcal·mol-1 is readily available to tripeptide fragments within the context of a protein chain; (3) overpopulation in certain regions of Ramachandran plot was observed for the unbiased conformers. Last but not least, the massive dataset of accurate (DFT-D3//COSMO-RS) conformational (free) energies of ∼1.6 M peptide conformers, P-CONF_1.6M, obtained throughout this work may serve as excellent dataset for calibrating and benchmarking of popular force fields.


Subject(s)
Peptides , Proteins , Amino Acids , Molecular Conformation , Molecular Dynamics Simulation , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL