Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38365425

ABSTRACT

Heterotopic ossification (HO) is a non-physiological bone formation where soft tissue progenitor cells differentiate into chondrogenic cells. In fibrodysplasia ossificans progressiva (FOP), a rare genetic disease characterized by progressive and systemic HO, the Activin A/mutated ACVR1/mTORC1 cascade induces HO in progenitors in muscle tissues. The relevant biological processes aberrantly regulated by activated mTORC1 remain unclear, however. RNA-sequencing analyses revealed the enrichment of genes involved in oxidative phosphorylation (OXPHOS) during Activin A-induced chondrogenesis of mesenchymal stem cells derived from FOP patient-specific induced pluripotent stem cells. Functional analyses showed a metabolic transition from glycolysis to OXPHOS during chondrogenesis, along with increased mitochondrial biogenesis. mTORC1 inhibition by rapamycin suppressed OXPHOS, whereas OXPHOS inhibitor IACS-010759 inhibited cartilage matrix formation in vitro, indicating that OXPHOS is principally involved in mTORC1-induced chondrogenesis. Furthermore, IACS-010759 inhibited the muscle injury-induced enrichment of fibro/adipogenic progenitor genes and HO in transgenic mice carrying the mutated human ACVR1. These data indicated that OXPHOS is a critical downstream mediator of mTORC1 signaling in chondrogenesis and therefore is a potential FOP therapeutic target.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Mice , Animals , Humans , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Oxidative Phosphorylation , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Signal Transduction/genetics , Mice, Transgenic , Mechanistic Target of Rapamycin Complex 1/metabolism
2.
JBMR Plus ; 7(5): e10737, 2023 May.
Article in English | MEDLINE | ID: mdl-37197316

ABSTRACT

Collagen X is a non-fibril collagen produced by hypertrophic chondrocytes and was believed to associate with the calcification process of growth plate cartilage. The homozygous loss of Col10a1 gene in mice, however, demonstrated no remarkable effects on growth plate formation or skeletal development. To investigate the role of collagen X in human chondrocytes, we established human induced pluripotent stem cells (hiPSCs) with heterozygous (COL10A1 +/-) or homozygous (COL10A1 -/-) deletions of COL10A1 gene using the dual sgRNA CRISPR/Cas9 system. Several mutant clones were established and differentiated into hypertrophic chondrocytes by a previously reported 3D induction method. No remarkable differences were observed during the differentiation process between parental and mutant cell lines, which differentiated into cells with features of hypertrophic chondrocytes, indicating that collagen X is dispensable for the hypertrophic differentiation of human chondrocytes in vitro. To investigate the effects of collagen X deficiency in vivo, chondrocyte pellets at the proliferating or prehypertrophic stage were transplanted into immunodeficient mice. Proliferating pellet-derived tissues demonstrated the zonal distribution of chondrocytes with the transition to bone tissues mimicking growth plates, and the proportion of bone tended to be larger in COL10A1 -/- tissues. Prehypertrophic pellet-derived tissues produced trabecular bone structures with features of endochondral ossification, and there was no clear difference between parental- and mutant-derived tissues. A transcriptome analysis of chondrocyte pellets at the hypertrophic phase showed a lower expression of proliferating-phase genes and a higher expression of calcification-phase genes in COL10A1 -/- pellets compared with parental cell pellets. These in vitro and in vivo data suggested that collagen X is dispensable for the hypertrophic differentiation and endochondral ossification of human iPSC-derived chondrocytes, though it may facilitate the differentiation process. Thus, COL10A1 -/- iPSC lines are useful for investigating the physiological role of collagen X in chondrocyte differentiation. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
Sci Rep ; 13(1): 1094, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658197

ABSTRACT

Although the formation of bone-like nodules is regarded as the differentiation process from stem cells to osteogenic cells, including osteoblasts and osteocytes, the precise biological events during nodule formation are unknown. Here we performed the osteogenic induction of human induced pluripotent stem cells using a three-dimensional (3D) culture system using type I collagen gel and a rapid induction method with retinoic acid. Confocal and time-lapse imaging revealed the osteogenic differentiation was initiated with vigorous focal proliferation followed by aggregation, from which cells invaded the gel. Invading cells changed their morphology and expressed osteocyte marker genes, suggesting the transition from osteoblasts to osteocytes. Single-cell RNA sequencing analysis revealed that 3D culture-induced cells with features of periosteal skeletal stem cells, some of which expressed TGFß-regulated osteoblast-related molecules. The role of TGFß signal was further analyzed in the transition from osteoblasts to osteocytes, which revealed that modulation of the TGFß signal changed the morphology and motility of cells isolated from the 3D culture, suggesting that the TGFß signal maintains the osteoblastic phenotype and the transition into osteocytes requires down-regulation of the TGFß signal.


Subject(s)
Induced Pluripotent Stem Cells , Osteocytes , Humans , Transforming Growth Factor beta , Osteogenesis/genetics , Osteoblasts , Cell Differentiation/genetics
4.
Orphanet J Rare Dis ; 17(1): 364, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131296

ABSTRACT

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive heterotopic ossification (HO) in soft tissues due to a heterozygous mutation of the ACVR1A gene (FOP-ACVR1A), which erroneously transduces the BMP signal by Activin-A. Although inflammation is known to trigger HO in FOP, the role of FOP-ACVR1A on inflammatory cells remains to be elucidated. RESULTS: We generated immortalized monocytic cell lines from FOP-iPSCs (FOP-ML) and mutation rescued iPSCs (resFOP-ML). Cell morphology was evaluated during the monocyte induction and after immortalization. Fluorescence-activated cell sorting (FACS) was performed to evaluate the cell surface markers CD14 and CD16 on MLs. MLs were stimulated with lipopolysaccharide or Activin-A and the gene expression was evaluated by quantitative PCR and microarray analysis. Histological analysis was performed for HO tissue obtained from wild type mice and FOP-ACVR1A mice which conditionally express human mutant ACVR1A gene by doxycycline administration. Without any stimulation, FOP-ML showed the pro-inflammatory signature of CD16+ monocytes with an upregulation of INHBA gene, and treatment of resFOP-ML with Activin-A induced an expression profile mimicking that of FOP-ML at baseline. Treatment of FOP-ML with Activin-A further induced the inflammatory profile with an up-regulation of inflammation-associated genes, of which some, but not all, of which were suppressed by corticosteroid. Experiments using an inhibitor for TGFß or BMP signal demonstrated that Activin-A-induced genes such as CD16 and CCL7, were regulated by both signals, indicating Activin-A transduced dual signals in FOP-ML. A comparison with resFOP-ML identified several down-regulated genes in FOP-ML including LYVE-1, which is known to suppress matrix-formation in vivo. The down-regulation of LYVE-1 in HO tissues was confirmed in FOP model mice, verifying the significance of the in vitro experiments. CONCLUSION: These results indicate that FOP-ML faithfully recapitulated the phenotype of primary monocytes of FOP and the combination with resFOP-ML is a useful tool to investigate molecular events at the initial inflammation stage of HO in FOP.


Subject(s)
Activin Receptors, Type I/genetics , Myositis Ossificans , Ossification, Heterotopic , Activin Receptors, Type I/metabolism , Activins/genetics , Activins/metabolism , Animals , Doxycycline , Humans , Inflammation/genetics , Lipopolysaccharides , Mice , Monocytes/metabolism , Monocytes/pathology , Mutation/genetics , Myositis Ossificans/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...