Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aust Endod J ; 45(2): 189-195, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30242795

ABSTRACT

CD90 expression and immunoreactive cell localisation in rat dental pulp cells after cavity preparation was investigated. Cavity preparation was performed on the maxillary first molar of 8-week-old Wistar rats (n = 36), and immunohistochemistry and quantitative real-time PCR were performed. CD90-immunoreactivity was observed among subodontoblastic cells in the control group. One day after cavity preparation, the CD90-immunoreactivity disappeared under the cavity area. While CD90-immunoreactivity was faint after 3 days, the re-arrangement of odontoblasts was detected in contact with dentine. After 5 days, the odontoblasts were observed beneath the dentine, and CD90-immunoreactive cells were localised under the odontoblast layer. Immunofluorescence showed co-localisation of CD90 and nestin was detected after 3 days. After 5 days, CD90-immunoreactivity increased at the subodontoblastic layer. mRNA expression of CD90 and DSPP decreased after cavity preparation, and gradually recovered (P < 0.01). These results suggest that CD90-immunoreactive cells in the subodontoblastic layer contribute to regeneration of odontoblast and subodontoblastic layers following cavity preparation.


Subject(s)
Dental Pulp , Odontoblasts , Animals , Dental Cavity Preparation , Molar , Rats , Rats, Wistar
2.
J Chem Ecol ; 42(8): 814-820, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27596215

ABSTRACT

A cell culture of Cupressus lusitanica was used to investigate the reaction of a plant to certain airborne chemicals. Compared with laboratory and field methods using intact plants or tissues, a cell culture is advantageous because it is not affected by environmental factors, and the experiments are easier to reproduce. When exposed to an elicitor, our cell line produces 10 monoterpenes and ß-thujaplicin, which is a strong phytoalexin. These monoterpenes are emitted into the vapor phase and are expected to play a role in airborne signaling. In the present study, the cells were exposed to monoterpene vapors, and the volatiles present in the culture flasks were monitored. When the culture cells were exposed to low doses of sabinene, we detected γ-terpinene and p-cymene. After exposure to γ-terpinene, we found p-cymene and terpinolene, whereas p-cymene exposure resulted in terpinolene emission. By contrast, the other seven monoterpenes we investigated did not induce any emissions of other monoterpenes. These results strongly suggest that in C. lusitanica a signaling cascade exists that starts with the emission of sabinene and moves to γ-terpinene, p-cymene, and finally to terpinolene, which accelerates the production of the phytoalexin ß-thujaplicin.


Subject(s)
Air , Cupressus/cytology , Cupressus/metabolism , Monoterpenes/metabolism , Monoterpenes/pharmacology , Signal Transduction/drug effects , Tropolone/analogs & derivatives , Cells, Cultured , Cupressus/drug effects , Cyclohexane Monoterpenes , Dose-Response Relationship, Drug , Terpenes/pharmacology , Tropolone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...