Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38656405

ABSTRACT

Cells exposed to proteotoxic stress invoke adaptive responses aimed at restoring proteostasis. Our previous studies have established a firm role for the transcription factor Nuclear factor-erythroid derived-2-related factor-1 (Nrf1) in responding to proteotoxic stress elicited by inhibition of cellular proteasome. Following proteasome inhibition, Nrf1 mediates new proteasome synthesis, thus enabling the cells to mitigate the proteotoxic stress. Here, we report that under similar circumstances, multiple components of the autophagy-lysosomal pathway (ALP) were transcriptionally upregulated in an Nrf1-dependent fashion, thus providing the cells with an additional route to cope with proteasome insufficiency. In response to proteasome inhibitors, Nrf1-deficient cells displayed profound defects in invoking autophagy and clearance of aggresomes. This phenomenon was also recapitulated in NGLY1 knockout cells, where Nrf1 is known to be non-functional. Conversely, overexpression of Nrf1 induced ALP genes and endowed the cells with an increased capacity to clear aggresomes. Overall, our results significantly expand the role of Nrf1 in shaping the cellular response to proteotoxic stress.


Subject(s)
Autophagy , NF-E2-Related Factor 1 , Proteotoxic Stress , Animals , Humans , Mice , Autophagy/genetics , Lysosomes/metabolism , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Proteostasis , Stress, Physiological
2.
JAMA Cardiol ; 8(8): 721-731, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37405741

ABSTRACT

Importance: Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective: To identify a new gene for nsBAV. Design, Setting, and Participants: This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures: To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results: A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance: This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.


Subject(s)
Bicuspid Aortic Valve Disease , Signal Transduction , Ubiquitin-Protein Ligases , Receptors, Notch/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Genetic Association Studies , Humans
3.
Trends Genet ; 37(2): 160-173, 2021 02.
Article in English | MEDLINE | ID: mdl-32988635

ABSTRACT

The key to a healthy mammalian cell lies in properly functioning proteolytic machineries called proteasomes. The proteasomes are multisubunit complexes that catalyze the degradation of unwanted proteins and also control half-lives of key cellular regulatory factors. Aberrant proteasome activity is often associated with human diseases such as cancer and neurodegeneration, and so an in-depth understanding of how it is regulated has implications for potential disease interventions. Transcriptional regulation of the proteasome can dictate its abundance and also influence its function, assembly, and location. This ensures proper proteasomal activity in response to developmental cues and to physiological conditions such as starvation and oxidative stress. In this review, we highlight and discuss the roles of the transcription factors that are involved in the regulation of the mammalian proteasome.


Subject(s)
Mammals/genetics , Proteasome Endopeptidase Complex/genetics , Transcription, Genetic/genetics , Animals , Humans , Neoplasms/genetics , Oxidative Stress/genetics , Proteins/genetics , Proteolysis , Transcription Factors/genetics
4.
PLoS Genet ; 13(2): e1006438, 2017 02.
Article in English | MEDLINE | ID: mdl-28207763

ABSTRACT

Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc's apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells.


Subject(s)
Apoptosis/genetics , Caspases/genetics , Drosophila Proteins/genetics , Ubiquitination/genetics , Animals , Caspase 2/genetics , Caspase 9/genetics , Drosophila melanogaster/genetics , Protein Binding , Protein Domains/genetics , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...