Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 172, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347116

ABSTRACT

The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.


Subject(s)
Carbon , Metabolomics , Carbon Isotopes/chemistry , Mass Spectrometry/methods , Metabolomics/methods
2.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37889279

ABSTRACT

SUMMARY: The analysis of stable isotope labeling experiments requires accurate, efficient, and reproducible quantification of mass isotopomer distributions (MIDs), which is not a core feature of general-purpose metabolomics software tools that are optimized to quantify metabolite abundance. Here, we present PIRAMID (Program for Integration and Rapid Analysis of Mass Isotopomer Distributions), a MATLAB-based tool that addresses this need by offering a user-friendly, graphical user interface-driven program to automate the extraction of isotopic information from mass spectrometry (MS) datasets. This tool can simultaneously extract ion chromatograms for various metabolites from multiple data files in common vendor-agnostic file formats, locate chromatographic peaks based on a targeted list of characteristic ions and retention times, and integrate MIDs for each target ion. These MIDs can be corrected for natural isotopic background based on the user-defined molecular formula of each ion. PIRAMID offers support for datasets acquired from low- or high-resolution MS, and single (MS) or tandem (MS/MS) instruments. It also enables the analysis of single or dual labeling experiments using a variety of isotopes (i.e. 2H, 13C, 15N, 18O, 34S). DATA AVAILABILITY AND IMPLEMENTATION: MATLAB p-code files are freely available for non-commercial use and can be downloaded from https://mfa.vueinnovations.com/. Commercial licenses are also available. All the data presented in this publication are available under the "Help_menu" folder of the PIRAMID software.


Subject(s)
Software , Tandem Mass Spectrometry , Oxygen Isotopes , Metabolomics/methods
3.
Plant Physiol ; 193(4): 2661-2676, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37658850

ABSTRACT

ACYL CARRIER PROTEIN4 (ACP4) is the most abundant ACP isoform in Arabidopsis (Arabidopsis thaliana) leaves and acts as a scaffold for de novo fatty acid biosynthesis and as a substrate for acyl-ACP-utilizing enzymes. Recently, ACP4 was found to interact with a protein-designated plastid RHOMBOID LIKE10 (RBL10) that affects chloroplast monogalactosyldiacylglycerol (MGDG) biosynthesis, but the cellular function of this interaction remains to be explored. Here, we generated and characterized acp4 rbl10 double mutants to explore whether ACP4 and RBL10 directly interact in influencing chloroplast lipid metabolism. Alterations in the content and molecular species of chloroplast lipids such as MGDG and phosphatidylglycerol were observed in the acp4 and rbl10 mutants, which are likely associated with the changes in the size and profiles of diacylglycerol (DAG), phosphatidic acid (PA), and acyl-ACP precursor pools. ACP4 contributed to the size and profile of the acyl-ACP pool and interacted with acyl-ACP-utilizing enzymes, as expected for its role in fatty acid biosynthesis and chloroplast lipid assembly. RBL10 appeared to be involved in the conversion of PA to DAG precursors for MGDG biosynthesis as evidenced by the increased 34:x PA and decreased 34:x DAG in the rbl10 mutant and the slow turnover of radiolabeled PA in isolated chloroplasts fed with [14C] acetate. Interestingly, the impaired PA turnover in rbl10 was partially reversed in the acp4 rbl10 double mutant. Collectively, this study shows that ACP4 and RBL10 affect chloroplast lipid biosynthesis by modulating substrate precursor pools and appear to act independently.


Subject(s)
Acyl Carrier Protein , Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Fatty Acids/metabolism , Phosphatidic Acids/metabolism , Plastids/metabolism , Acyl Carrier Protein/metabolism
4.
Front Plant Sci ; 13: 836665, 2022.
Article in English | MEDLINE | ID: mdl-35665175

ABSTRACT

Pollen germination is an essential process for pollen tube growth, pollination, and therefore seed production in flowering plants, and it requires energy either from remobilization of stored carbon sources, such as lipids and starches, or from secreted exudates from the stigma. Transcriptome analysis from in vitro pollen germination previously showed that 14 GO terms, including metabolism and energy, were overrepresented in Arabidopsis. However, little is understood about global changes in carbohydrate and energy-related metabolites during the transition from mature pollen grain to hydrated pollen, a prerequisite to pollen germination, in most plants, including Arabidopsis. In this study, we investigated differential metabolic pathway enrichment among mature, hydrated, and germinated pollen using an untargeted metabolomic approach. Integration of publicly available transcriptome data with metabolomic data generated as a part of this study revealed starch and sucrose metabolism increased significantly during pollen hydration and germination. We analyzed in detail alterations in central metabolism, focusing on soluble carbohydrates, non-esterified fatty acids, glycerophospholipids, and glycerolipids. We found that several metabolites, including palmitic acid, oleic acid, linolenic acid, quercetin, luteolin/kaempferol, and γ-aminobutyric acid (GABA), were elevated in hydrated pollen, suggesting a potential role in activating pollen tube emergence. The metabolite levels of mature, hydrated, and germinated pollen, presented in this work provide insights on the molecular basis of pollen germination.

5.
Front Plant Sci ; 13: 863254, 2022.
Article in English | MEDLINE | ID: mdl-35401590

ABSTRACT

In developing soybean seeds, carbon is partitioned between oil, protein and carbohydrates. Here, we demonstrate that suppression of lipase-mediated turnover of triacylglycerols (TAG) during late seed development increases fatty acid content and decreases the presence of undigestible oligosaccharides. During late stages of embryo development, the fatty acid content of soybean seed decreases while the levels of the oligosaccharides raffinose and stachyose increase. Three soybean genes orthologous to the Arabidopsis lipase gene SUGAR-DEPENDENT1 (SDP1) are upregulated at this time. Suppression of these genes resulted in higher oil levels, with lipid levels in the best lines exceeding 24% of seed weight. In addition, lipase-suppressed lines produced larger seeds compared to wild-type plants, resulting in increases of over 20% in total lipid per seed. Levels of raffinose and stachyose were lower in the transgenic lines, with average reductions of 15% in total raffinose family oligosaccharides observed. Despite the increase in oil, protein content was not negatively impacted and trended higher in the transgenic lines. These results are consistent with a role for SDP1 in turning over TAG to supply carbon for other needs, including the synthesis of oligosaccharides, and offer new strategies to further improve the composition of soybean seeds.

6.
Metab Eng ; 69: 231-248, 2022 01.
Article in English | MEDLINE | ID: mdl-34920088

ABSTRACT

The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.


Subject(s)
Metabolic Flux Analysis , Starch , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Starch/genetics , Starch/metabolism , Nicotiana/metabolism , Triglycerides
7.
Plant Sci ; 312: 111033, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34620437

ABSTRACT

The glutamine amidotransferase gene GAT1_2.1 is a marker of N status in Arabidopsis root, linked to a shoot branching phenotype. The protein has an N-terminal glutamine amidotransferase domain and a C-terminal extension with no recognizable protein domain. A purified, recombinant version of the glutamine amidotransferase domain was catalytically active as a glutaminase, with apparent Km value of 0.66 mM and Vmax value of 2.6 µkatal per mg. This form complemented an E. coli glutaminase mutant, ΔYneH. Spiking of root metabolite extracts with either the N-terminal or full length form purified from transformed tobacco leaves led to reciprocal changes in glutamine and ammonia concentration. No product derived from amido-15N-labeled glutamine was identified. Visualization of GAT1_2.1-YPF transiently expressed in tobacco leaves confirmed its mitochondrial localization. gat1_2.1 exhibited reduced growth as compared with wild-type seedlings on media with glutamine as sole nitrogen source. Results of targeted metabolite profiling pointed to a possible activation of the GABA shunt in the mutant following glutamine treatments, with reduced levels of glutamic acid, 2-oxoglutarate and γ-aminobutyric acid and increased levels of succinic acid. GAT1_2.1 may act as a glutaminase, in concert with Glutamate Dehydrogenase 2, to hydrolyze glutamine and channel 2-oxoglutarate to the TCA cycle under high nitrogen conditions.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/genetics , Glutaminase/genetics , Glutaminase/metabolism , Nitrogen/metabolism , Plant Roots/enzymology , Transaminases/genetics , Transaminases/metabolism , Genetic Variation , Genotype , Plant Roots/genetics
8.
Metabolites ; 11(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806402

ABSTRACT

The combination of 13C-isotopic labeling and mass spectrometry imaging (MSI) offers an approach to analyze metabolic flux in situ. However, combining isotopic labeling and MSI presents technical challenges ranging from sample preparation, label incorporation, data collection, and analysis. Isotopic labeling and MSI individually create large, complex data sets, and this is compounded when both methods are combined. Therefore, analyzing isotopically labeled MSI data requires streamlined procedures to support biologically meaningful interpretations. Using currently available software and techniques, here we describe a workflow to analyze 13C-labeled isotopologues of the membrane lipid and storage oil lipid intermediate-phosphatidylcholine (PC). Our results with embryos of the oilseed crops, Camelina sativa and Thlaspi arvense (pennycress), demonstrated greater 13C-isotopic labeling in the cotyledons of developing embryos compared with the embryonic axis. Greater isotopic enrichment in PC molecular species with more saturated and longer chain fatty acids suggest different flux patterns related to fatty acid desaturation and elongation pathways. The ability to evaluate MSI data of isotopically labeled plant embryos will facilitate the potential to investigate spatial aspects of metabolic flux in situ.

9.
Plant Direct ; 5(2): e00308, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33644633

ABSTRACT

Cytokinins (CKs) play a fundamental role in regulating dynamics of organ source/sink relationships during plant development, including flowering and seed formation stages. As a result, CKs are key drivers of seed yield. The cytokinin oxidase/dehydrogenase (CKX) is one of the critical enzymes responsible for regulating plant CK levels by causing their irreversible degradation. Variation of CKX activity is significantly correlated with seed yield in many crop species while in soybean (Glycine max L.), the possible associations between CKX gene family members (GFMs) and yield parameters have not yet been assessed. In this study, 17 GmCKX GFMs were identified, and natural variations among GmCKX genes were probed among soybean cultivars with varying yield characteristics. The key CKX genes responsible for regulating CK content during seed filling stages of reproductive development were highlighted using comparative phylogenetics, gene expression analysis and CK metabolite profiling. Five of the seventeen identified GmCKX GFMs, showed natural variations in the form of single nucleotide polymorphisms (SNPs). The gene GmCKX7-1, with high expression during critical seed filling stages, was found to have a non-synonymous mutation (H105Q), on one of the active site residues, Histidine 105, previously reported to be essential for co-factor binding to maintain structural integrity of the enzyme. Soybean lines with this mutation had higher CK content and desired yield characteristics. The potential for marker-assisted selection based on the identified natural variation within GmCKX7-1, is discussed in the context of hormonal control that can result in higher soybean yield.

10.
Plant Physiol ; 186(2): 874-890, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33693938

ABSTRACT

The negative association between protein and oil production in soybean (Glycine max) seed is well-documented. However, this inverse relationship is based primarily on the composition of mature seed, which reflects the cumulative result of events over the course of soybean seed development and therefore does not convey information specific to metabolic fluctuations during developmental growth regimes. In this study, we assessed maternal nutrient supply via measurement of seed coat exudates and metabolite levels within the cotyledon throughout development to identify trends in the accumulation of central carbon and nitrogen metabolic intermediates. Active metabolic activity during late seed development was probed through transient labeling with 13C substrates. The results indicated: (1) a drop in lipid contents during seed maturation with a concomitant increase in carbohydrates, (2) a transition from seed filling to maturation phases characterized by quantitatively balanced changes in carbon use and CO2 release, (3) changes in measured carbon and nitrogen resources supplied maternally throughout development, (4) 13C metabolite production through gluconeogenic steps for sustained carbohydrate accumulation as the maternal nutrient supply diminishes, and (5) oligosaccharide biosynthesis within the seed coat during the maturation phase. These results highlight temporal engineering targets for altering final biomass composition to increase the value of soybeans and a path to breaking the inverse correlation between seed protein and oil content.


Subject(s)
Carbon/metabolism , Glycine max/metabolism , Nitrogen/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Biomass , Carbohydrate Metabolism , Carbon Dioxide/metabolism , Carbon Isotopes , Cotyledon/growth & development , Cotyledon/metabolism , Lipid Metabolism , Oligosaccharides/biosynthesis , Plant Oils/metabolism , Seeds/growth & development , Glycine max/growth & development
11.
iScience ; 23(2): 100854, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32058965

ABSTRACT

Targeted metabolite analysis in combination with 13C-tracing is a convenient strategy to determine pathway activity in biological systems; however, metabolite analysis is limited by challenges in separating and detecting pathway intermediates with current chromatographic methods. Here, a hydrophilic interaction chromatography tandem mass spectrometry approach was developed for improved metabolite separation, isotopologue analysis, and quantification. The physiological responses of a Yarrowia lipolytica strain engineered to produce ∼400 mg/L α-ionone and temporal changes in metabolism were quantified (e.g., mevalonate secretion, then uptake) indicating bottleneck shifts in the engineered pathway over the course of fermentation. Dynamic labeling results indicated limited tricarboxylic acid cycle label incorporation and, combined with a measurable ATP shortage during the high ionone production phase, suggested that electron transport and oxidative phosphorylation may limit energy supply and strain performance. The results provide insights into terpenoid pathway metabolic dynamics of non-model yeasts and offer guidelines for sensor development and modular engineering.

12.
Anal Chem ; 91(23): 15049-15056, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31660717

ABSTRACT

Cytokinins (CKs) are adenine derivatives that act as phytohormones. These signaling molecules control plant cell division and differentiation, organ growth, and senescence, and they orchestrate plant interactions with biotic and abiotic environments. While CKs are predominately recognized as plant-based substances, CKs have been found across different domains of life, including microorganisms, insects, mammals, and humans. In plants, CKs act at trace, often low femtomolar concentrations; therefore, sensitive and precise analytical techniques are required to accurately detect and quantify them from complex biological matrices. Here, we report the first comprehensive CK quantification method using a QExactive Orbitrap mass spectrometer in high-resolution with a parallel reaction monitoring (PRM)-based approach. The current method progresses upon multiple reaction monitoring (MRM) methods, previously used for CK profiling on triple quadrupole mass spectrometers. This method offers improved mass accuracy and the complete product ion mass spectra (MS/MS) for compound determination with increased specificity, and sensitivity comparable with triple quadrupole instruments. The presented PRM approach was successfully applied to quantify 32 CKs in several biological samples.


Subject(s)
Cytokinins/analysis , Mass Spectrometry/instrumentation , Animals , Complex Mixtures/analysis , Humans , Mass Spectrometry/methods , Plant Growth Regulators/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods
13.
Plant Methods ; 15: 46, 2019.
Article in English | MEDLINE | ID: mdl-31110556

ABSTRACT

BACKGROUND: Methods used to quantify protein from biological samples are often inaccurate with significant variability that requires care to minimize. The errors result from losses during protein preparation and purification and false detection of interfering compounds or elements. Amino acid analysis (AAA) involves a series of chromatographic techniques that can be used to measure protein levels, avoiding some difficulties and providing specific compositional information. However, unstable derivatives, that are toxic and can be costly, incomplete reactions, inadequate chromatographic separations, and the lack of a single hydrolysis method with sufficient recovery of all amino acids hinder precise protein quantitation using AAA. RESULTS: In this study, a hydrophilic interaction chromatography based method was used to separate all proteinogenic amino acids, including isobaric compounds leucine and isoleucine, prior to detection by multiple reaction monitoring with LC-MS/MS. Through inclusion of commercially available isotopically labeled (13C, 15N) amino acids as internal standards we adapted an isotopic dilution strategy for amino acid-based quantification of proteins. Three hydrolysis methods were tested with ubiquitin, bovine serum albumin, (BSA), and a soy protein biological reference material (SRM 3234; NIST) resulting in protein estimates that were 86-103%, 82-94%, and 90-99% accurate for the three protein samples respectively. The methane sulfonic acid hydrolysis approach provided the best recovery of labile amino acids including: cysteine, methionine and tryptophan that are challenging to accurately quantify. CONCLUSIONS: Accurate determination of protein quantity and amino acid composition in heterogeneous biological samples is non-trivial. Recent advances in chromatographic phases and LC-MS/MS based methods, along with the availability of isotopic standards can minimize difficulties in analysis and improve protein quantitation. A robust method is described for high-throughput protein quantification and amino acid compositional analysis. Since accurate measurement of protein quality and quantity are a requirement for many biological studies that relate to crop improvement or more generally, our understanding of metabolism in living systems, we envision this method will have broad applicability.

14.
Metabolites ; 10(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905618

ABSTRACT

Protein and oil levels measured at maturity are inversely correlated across soybean lines; however, carbon is in limited supply during maturation resulting in tradeoffs for the production of other reserves including oligosaccharides. During the late stages of seed development, the allocation of carbon for storage reserves changes. Lipid and protein levels decline while concentrations of indigestible raffinose family oligosaccharides (RFOs) increase, leading to a decreased crop value. Since the maternal source of carbon is diminished during seed maturation stages of development, carbon supplied to RFO synthesis likely comes from an internal, turned-over source and may contribute to the reduction in protein and lipid content in mature seeds. In this study, fast neutron (FN) mutagenized soybean populations with deletions in central carbon metabolic genes were examined for trends in oil, protein, sugar, and RFO accumulation leading to an altered final composition. Two lines with concurrent increases in oil and protein, by combined 10%, were identified. A delayed switch in carbon allocation towards RFO biosynthesis resulted in extended lipid accumulation and without compromising protein. Strategies for future soybean improvement using FN resources are described.

15.
Nat Plants ; 3(10): 814-824, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28947800

ABSTRACT

Acetyl-coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on adenosine triphosphate (ATP)-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants demonstrate the dynamic changes in H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants.


Subject(s)
Acetyl Coenzyme A/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Histones/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Acetylation , Cytosol/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Lysine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...