Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Annu Rev Phytopathol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885471

ABSTRACT

Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens Fusarium oxysporum and Verticillium dahliae. Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in F. oxysporum, including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.

2.
Curr Opin Plant Biol ; 77: 102498, 2024 02.
Article in English | MEDLINE | ID: mdl-38142620

ABSTRACT

Plants engage with a wide variety of microorganisms either in parasitic or mutualistic relationships, which have helped them to adapt to terrestrial ecosystems. Microbial interactions have driven plant evolution and led to the emergence of complex interaction outcomes via suppression of host defenses by evolving pathogens. The evolution of plant-microbe interactions is shaped by conserved host and pathogen gene modules and fast-paced lineage-specific adaptability which determines the interaction outcome. Recent findings from different microbes ranging from bacteria, oomycetes, and fungi suggest recurrent concepts in establishing interactions with evolutionarily distant plant hosts, but also clade-specific adaptation that ultimately contributes to pathogenicity. Here, we revisit some of the latest features that illustrate shared colonization strategies of the fungal pathogen Fusarium oxysporum on distant plant lineages and lineage-specific adaptability of mini-chromosomal units encoding effectors, for shaping host-specific pathogenicity in angiosperms.


Subject(s)
Embryophyta , Fusarium , Fusarium/genetics , Plant Diseases/microbiology , Ecosystem , Plants/microbiology , Host-Pathogen Interactions , Fungi
3.
Luminescence ; 38(11): 1883-1891, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37564003

ABSTRACT

Sodium dodecyl sulfate (SDS)-capped 1-pyrenecarboxaldehyde nanoparticles (PyalNPs) were prepared using a reprecipitation method in an aqueous medium and exhibited red-shifted aggregation-induced enhanced emission (AIEE). The dynamic light scattering (DLS) examination showed narrower particle size distribution with an average particle size of 41 nm, whereas -34.5 mV zeta potential value indicate the negative surface charge and good stability of nanoparticles (NPs) in an aqueous medium. The AIEE was seen at λmax = 473 nm in a fluorescence spectrum of a PyalNP suspension. In the presence of Cu2+ ions, the fluorescence of PyalNPs quenches very significantly, even in the presence of other metal ions like Ba2+ , Ca2+ , Cd2+ , Co2+ , Al3+ , Fe2+ , Hg2+ , Ni2+ and Mg2+ . The changes in the fluorescence lifetime of PyalNPs in the presence of Cu2+ ions suggested that the type of quenching was dynamic. The fluorescence quenching data for the NPs suspension fitted well into a typical Stern-Volmer relationship in the concentration range 1.0-25 µg/ml of Cu2+ ions. The estimated value of the correlation coefficient R2 = 0.9877 was close to 1 and showed the linear relationship between quenching data and Cu2+ ion concentration. The limit of detection (LOD) was found to be 0.94 ng/ml and is far below the tolerable intake limit value of 1.3 µg/ml accepted by the World Health Organization for Cu2+ ions in drinking water. The fluorescence quenching approach for a SDS-capped Pyal nanosuspension for copper ion quantification is of high specificity and coexisting ions were found to interfere very negligibly. The developed method was successfully applied for the estimation of copper ions in river water samples.


Subject(s)
Copper , Drinking Water , Copper/analysis , Water/chemistry , Fluorescent Dyes/chemistry , Ions , Spectrometry, Fluorescence
4.
Gene ; 851: 146994, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36272650

ABSTRACT

To elucidate the role of the phenylpropanoid pathway in the expression of resistance during compatible and incompatible interactions between pigeon pea and wilt-causing vascular pathogen Fusarium udum, we estimated the total phenol content, lignin, phenolic acids and activity of enzymes involved in lignin polymerization of monolignols and examined the expression pattern of lignin biosynthesis genes. Our results demonstrated a higher accumulation of free and cell wall-bound phenolics and total lignin content in the highly resistant pigeon pea genotype ICP 14623 as compared to susceptible genotype ICP 14166. An increased activity of phenylpropanoid pathway-associated defense enzymes such as Phenylalanine ammonia-lyase, polyphenol oxidase, ascorbate and guaiacol- dependent peroxidases in resistant pigeon pea genotypes suggests their role in resistance. Moreover, analysis of lignin biosynthesis genes revealed their differential expression during resistant and susceptible interactions, revealed their crucial role in imparting resistance against wilt. Overall, our results indicated the role of physical and biochemical components of the phenylpropanoid pathway in the expression of resistance in pigeon pea against Fusarium wilt.


Subject(s)
Cajanus , Fusarium , Lignin , Cajanus/genetics , Biosynthetic Pathways , Phenylalanine Ammonia-Lyase/genetics , Plant Diseases/genetics
5.
New Phytol ; 233(3): 1220-1237, 2022 02.
Article in English | MEDLINE | ID: mdl-34758118

ABSTRACT

Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.


Subject(s)
Alkaloids , Solanum lycopersicum , Alkaloids/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Solanum lycopersicum/metabolism , Oxylipins/metabolism
6.
Nat Genet ; 52(10): 1111-1121, 2020 10.
Article in English | MEDLINE | ID: mdl-32989321

ABSTRACT

Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.


Subject(s)
Disease Resistance/genetics , Metabolome/genetics , Solanum lycopersicum/genetics , Transcriptome/genetics , Alkaloids/genetics , Domestication , Fruit/genetics , Fruit/growth & development , Fruit/parasitology , Fungi/genetics , Fungi/pathogenicity , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Metabolic Networks and Pathways/genetics , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Solanum/genetics , Solanum/microbiology
7.
Contemp Clin Dent ; 11(3): 274-276, 2020.
Article in English | MEDLINE | ID: mdl-33776355

ABSTRACT

Periodontitis has a multifactorial etiology as a result of interactions between periodontal pathogens and the host response. Due to the complex etiology and esthetic complications, the management of such patients is a challenging task. Vast arrays of treatment modalities are employed in the treatment of generalized periodontitis with varying success rates. Placental-derived tissues as allografts have recently been introduced for guided tissue regeneration in dentistry with favorable results. In this case report, successful periodontal treatment of a 25-year-old male patient with generalized periodontitis; Stage IV, Grade C, is presented with a 3-year follow-up. An interdisciplinary approach using regenerative periodontal surgery and a modified Andrew's bridge was used to successfully rehabilitate the patient. In a compliant patient with a well-structured interdisciplinary approach, questionable and hopeless teeth too can be retained over an extended period of time with no detrimental effect on the adjacent teeth.

8.
Gene ; 653: 57-64, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29428797

ABSTRACT

Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process.


Subject(s)
Cajanus/genetics , Cajanus/microbiology , Fusarium/pathogenicity , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Diseases/genetics , Base Sequence , Chromosome Mapping , Expressed Sequence Tags , Gene Expression Profiling , Genes, Plant , Nucleic Acid Conformation , RNA, Plant/genetics , RNA, Small Untranslated/metabolism
9.
Plant Biotechnol J ; 16(8): 1502-1513, 2018 08.
Article in English | MEDLINE | ID: mdl-29377467

ABSTRACT

Early blight (EB), caused by Alternaria solani, is a major threat to global tomato production. In comparison with cultivated tomato (Solanum lycopersicum), a wild relative, S. arcanum exhibits strong resistance against EB. However, molecular cascades operating during EB resistance in wild or cultivated tomato plants are largely obscure. Here, we provide novel insight into spatio-temporal molecular events in S. arcanum against A. solani. Transcriptome and co-expression analysis presented 33-WRKYs as promising candidates of which 12 SaWRKYs displayed differential expression patterns in resistant and susceptible accessions during EB disease progression. Among these, SaWRKY1 exhibited induced expression with significant modulation in xyloglucan endotrans hydrolase 5 (XTH5) and MYB2 expressions that correlated with the disease phenotypes. Electro-mobility shift assay confirmed physical interaction of recombinant SaWRKY1 to SaXTH5 and SaMYB2 promoters. Comparative WRKY1 promoter analysis between resistant and susceptible plants revealed the presence of crucial motifs for defence mechanism exclusively in resistant accession. Additionally, many defence-related genes displayed significant expression variations in both the accessions. Further, WRKY1 overexpressing transgenic plants exhibited higher levels of EB resistance while RNAi silencing lines had increased susceptibility to A. solani with altered expression of XTH5 and MYB2. Overall, these findings demonstrate the positive influence of WRKY1 in improving EB resistance in wild tomato and this could be further utilized as a potential target through genetic engineering to augment protection against A. solani in crop plants.


Subject(s)
Alternaria/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Solanum lycopersicum/microbiology , Solanum/microbiology , Gene Expression Regulation, Plant , Plant Proteins/genetics
10.
J Fluoresc ; 28(1): 51-63, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28967044

ABSTRACT

A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV-Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity. The SEM micrograph of pure p-terphenyl exhibit flakes like grains and then compact and finally gets separately with perylene amounts. The observed results indicate that closed packed crystal structures of doped p-terphenyl during crystal formation. The band gaps estimated from UV-visible spectroscopy decreased from 5.20 to 4.10 eV, while thermo-electrical conductivity increases with perylene content. The fluorescence spectra showed partial quenching of p-terphenyl fluorescence and simultaneously sensitization of perylene fluorescence at the excitation wavelength of p-terphenyl (290 nm) due to excitation energy transfer from p-terphenyl to perylene. The observed sensitization results are in harmony with intense blue color seen in fluorescence microscopy images and has high demand in scintillation process.

11.
J Fluoresc ; 28(1): 207-215, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29079896

ABSTRACT

The aqueous suspension of fluorescent nanoparticles were prepared by using 9-anthradehdye derivative (AH). The nanoparticles (AHNPs) were characterized using DLS-zeta sizer and SEM techniques. The photo physical properties of nanoparticles and precursor were measured and compared using UV-absorption spectroscopy, fluorescence spectroscopy and fluorescence lifetime studies. The significant overlap between fluorescence spectrum of AHNPs and excitation spectrum of Riboflavin (RF) led us to explore Fluorescence Resonance Energy Transfer (FRET) studies between AHNPs and RF in aqueous medium. The mechanism of FRET from AHNPs to RF discussed on spectral observations, thermodynamic parameters and changes produces in fluorescence lifetime in absence and presence of different concentrations of RF to AHNPs. The limit of detection for RF (0.071 µM) is considerably low compared with reported methods. Thus, we explore AHNPs as novel nano probe for quantitative determination of RF in pharmaceutical samples based on FRET study. In addition with this, AHNPs has excellent antibacterial activity than the bulk material for two different bacteria culture viz. E. coli and Bacillus sps. Graphical Abstract 9-anthradehdye based fluorescent nanoparticles (AHNPs) explores as nano probe to detect Riboflavin (RF) in aqueous medium based on Fluorescence Resonance Energy Transfer (FRET) studies. The proposed analytical method successfully applied for quantitative determination of RF in pharmaceutical samples. In addition, with this, AHNPs has excellent antibacterial activity than the bulk material for two different bacteria culture suspension viz. E. coli and Bacillus sps.


Subject(s)
Anthracenes/administration & dosage , Anti-Bacterial Agents/administration & dosage , Bacillus/drug effects , Escherichia coli/drug effects , Fluorescent Dyes/chemistry , Nanoparticles/administration & dosage , Riboflavin/analysis , Anthracenes/chemistry , Anti-Bacterial Agents/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer , Nanoparticles/chemistry , Thermodynamics
12.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28980117

ABSTRACT

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Subject(s)
Alkaloids/metabolism , Alternaria/physiology , Gene Expression Regulation, Plant , Metabolomics , Plant Diseases/immunology , Solanum/metabolism , Alkaloids/chemistry , Biosynthetic Pathways , Disease Resistance , Flavonoids/metabolism , Glycols/chemistry , Glycols/metabolism , Lignin/metabolism , Phenotype , Phytosterols/chemistry , Phytosterols/metabolism , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Saponins/metabolism , Secondary Metabolism , Solanum/genetics , Solanum/immunology , Solanum/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Nat Plants ; 3: 16205, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28005066

ABSTRACT

The amount of cholesterol made by many plants is not negligible. Whereas cholesterogenesis in animals was elucidated decades ago, the plant pathway has remained enigmatic. Among other roles, cholesterol is a key precursor for thousands of bioactive plant metabolites, including the well-known Solanum steroidal glycoalkaloids. Integrating tomato transcript and protein co-expression data revealed candidate genes putatively associated with cholesterol biosynthesis. A combination of functional assays including gene silencing, examination of recombinant enzyme activity and yeast mutant complementation suggests the cholesterol pathway comprises 12 enzymes acting in 10 steps. It appears that half of the cholesterogenesis-specific enzymes evolved through gene duplication and divergence from phytosterol biosynthetic enzymes, whereas others act reciprocally in both cholesterol and phytosterol metabolism. Our findings provide a unique example of nature's capacity to exploit existing protein folds and catalytic machineries from primary metabolism to assemble a new, multi-step metabolic pathway. Finally, the engineering of a 'high-cholesterol' model plant underscores the future value of our gene toolbox to produce high-value steroidal compounds via synthetic biology.

15.
AoB Plants ; 72015 May 08.
Article in English | MEDLINE | ID: mdl-25957315

ABSTRACT

Knowledge of the natural genetic variation and structure in a species is important for developing appropriate conservation strategies. As genetic diversity analysis among and within populations of Plumbago zeylanica remains unknown, we aimed (i) to examine the patterns and levels of morphological and genetic variability within/among populations and ascertain whether these variations are dependent on geographical conditions; and (ii) to evaluate genetic differentiation and population structure within the species. A total of 130 individuals from 13 populations of P. zeylanica were collected, covering the entire distribution area of species across India. The genetic structure and variation within and among populations were evaluated using inter-simple sequence repeat (ISSR) and randomly amplified DNA polymorphism (RAPD) markers. High levels of genetic diversity and significantly high genetic differentiation were revealed by both the markers among all studied populations. High values of among-population genetic diversity were found, which accounted for 60 % of the total genetic variance. The estimators of genetic diversity were higher in northern and eastern populations than in southern and western populations indicating the possible loss of genetic diversity during the spread of this species to Southern India. Bayesian analysis, unweighted pair group method with arithmetic average cluster analysis and principal coordinates analysis all showed similar results. A significant isolation-by-distance pattern was revealed in P. zeylanica by ISSR (r = 0.413, P = 0.05) and RAPD (r = 0.279, P = 0.05) analysis. The results obtained suggest an urgent need for conservation of existing natural populations along with extensive domestication of this species for commercial purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...