Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 989365, 2022.
Article in English | MEDLINE | ID: mdl-36507434

ABSTRACT

Aphids are one of the most important insect pests of wheat crop in all wheat growing regions of the world. Amongst various aphid species, the corn leaf aphid (Rhopalosiphum maidis F.) is considered one of the most destructive insect pests of wheat in the North Western Plains region of India. Transcriptome profiling of highly susceptible wheat Triticum durum genotype, A-9-30-1 and tolerant wheat Triticum aestivum genotype, HD2967 was performed to investigate aphid-host interactions. The results obtained from differential gene expression analysis of R. maidis on the highly susceptible genotype, A-9-30-1 plants, when compared with the tolerant genotype, HD2967, showed that 212 genes were significantly upregulated and 1009 genes were significantly downregulated. Our findings demonstrated that the genes associated with defense were significantly higher in response to R. maidis on HD2967 as compared to A-9-30-1. Additionally, various genes with physiological attributes were expressed during aphid attack. Based on gene ontology classification, three classifications, such as, cellular components (CC), molecular function (MF), and biological processes (BP) of sequences were identified. KEGG enrichment analysis revealed that twenty-five pathway genes were differentially expressed during the infestation of wheat with R. maidis. Notable changes were observed in A-9-30-1 and HD2967 transcriptomic profiling after infestation. The results obtained in the present study will help to elucidate the mechanism governing host-pest interaction and may lead to the development of new methods for increasing the resistance level of wheat against R. maidis, including over-expression of defense-related genes.

2.
Mol Biol Rep ; 46(1): 1213-1225, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30656491

ABSTRACT

Abiotic stress tolerance is one of the target trait in crop breeding under climate change scenario. Selection of suitable gene pools among available germplasm is first requisite for any crop improvement programme. Drought and salinity traits, being polygenic, are most difficult to target. The present investigation aimed at exploring and assessment of the genetic variability in Indian mustard at molecular level. A total of twenty-five genotypes and five related species were used. Sixty-three molecular markers including sequence related amplified polymorphism (SRAP) markers along with twenty-three expressed sequence tag-simple sequence repeats (EST-SSRs) were used for diversity analysis. Thirty-seven SRAPs and 18 EST-SSRs showed amplification producing a total of 423 alleles of which 422 were polymorphic. These markers gave an overall polymorphism of 99.78%, with 99.67% polymorphism in SRAPs and 100% polymorphism in EST-SSRs. The study revealed the genetic relationships among different genotypes of B. juncea and related species which could be used for Indian mustard improvement for targeting drought and salinity tolerance in future. Four SRAP and two EST-SSRs identified unique bands which may be related to abiotic stress tolerance. EST sequence BRMS-040 (IM7) was similar to Brassica and radish sequences related to PR-5 (pathogenesis-related) protein.


Subject(s)
Mustard Plant/genetics , Salt Tolerance/genetics , Thermotolerance/genetics , Alleles , DNA, Plant/genetics , Expressed Sequence Tags , Genetic Markers , Genetic Variation/genetics , Genome, Plant , Genotype , India , Microsatellite Repeats/genetics , Phenotype , Polymorphism, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...