Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Gerontol ; 174: 112130, 2023 04.
Article in English | MEDLINE | ID: mdl-36822486

ABSTRACT

Senescent cells were recently shown to play a role in aging-related malfunctions and pathologies. This consensus has been facilitated by evidence from senolytic model mice capable of eliminating senescent cells in tissues using well-characterized senescent markers, such as p16INK4a (hereafter p16). However, since the incomplete or artificial gene expression regulatory regions of manipulated marker genes affect their cognate expression, it currently remains unclear whether these models accurately reflect physiological senescence. We herein describe a novel approach to eliminate p16-expressing cells from mice at any given point in time, generating a new type of knock-in model, p16hCD2 mice and a toxin-conjugated anti-human CD2 antibody (hCD2-SAP) as an inducer. p16hCD2 mice possess an intact Cdkn2a locus that includes a p16 coding region and human CD2 (hCD2) expression unit. We confirmed cognate p16-associated hCD2 expression in mouse embryonic fibroblasts (MEFs) and in several tissues, such as the spleen, liver, and skin. We detected chronological increases in the hCD2-positive population in T lymphocytes that occurred in a p16-dependent manner, which reflected physiological aging. We then confirmed the high sensitivity of hCD2-SAP to hCD2 and validated its efficacy to remove p16-positive cells, particularly in T lymphocytes. The multiple administration of hCD2-SAP for a prolonged p16-positive cell deficiency partially restored aging-related phenotypes in T lymphocytes, such as the contraction of the CD4+ naïve population and expansion of senescence-associated T cells. Our novel approach of targeting p16-positive senescent cells will provide novel insights into the mechanisms underlying physiological aging in vivo.


Subject(s)
Immunotoxins , T-Lymphocytes , Mice , Animals , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Immunotoxins/genetics , Immunotoxins/metabolism , Senotherapeutics , Fibroblasts/metabolism , Phenotype , CD4-Positive T-Lymphocytes
2.
Microb Cell ; 6(10): 482-490, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31646149

ABSTRACT

In many plants and microorganisms, intracellular proline has a protective role against various stresses, including heat-shock, oxidation and osmolarity. Environmental stresses induce cellular senescence in a variety of eukaryotes. Here we showed that intracellular proline regulates the replicative lifespan in the budding yeast Saccharomyces cerevisiae. Deletion of the proline oxidase gene PUT1 and expression of the γ-glutamate kinase mutant gene PRO1-I150T that is less sensitive to feedback inhibition accumulated proline and extended the replicative lifespan of yeast cells. Inversely, disruption of the proline biosynthetic genes PRO1, PRO2, and CAR2 decreased stationary proline level and shortened the lifespan of yeast cells. Quadruple disruption of the proline transporter genes unexpectedly did not change intracellular proline levels and replicative lifespan. Overexpression of the stress-responsive transcription activator gene MSN2 reduced intracellular proline levels by inducing the expression of PUT1, resulting in a short lifespan. Thus, the intracellular proline levels at stationary phase was positively correlated with the replicative lifespan. Furthermore, multivariate analysis of amino acids in yeast mutants deficient in proline metabolism showed characteristic metabolic profiles coincident with longevity: acidic and basic amino acids and branched-chain amino acids positively contributed to the replicative lifespan. These results allude to proline metabolism having a physiological role in maintaining the lifespan of yeast cells.

3.
Biochem Biophys Res Commun ; 488(1): 218-223, 2017 06 17.
Article in English | MEDLINE | ID: mdl-28495531

ABSTRACT

In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and two small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress.


Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Fungal/genetics , Ribonucleotide Reductases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Ribonucleotide Reductases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
4.
Biochem Biophys Res Commun ; 463(3): 351-6, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26022127

ABSTRACT

Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. (1)H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes.


Subject(s)
DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , Minichromosome Maintenance 1 Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/cytology , Telomere-Binding Proteins/genetics , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , Forkhead Transcription Factors/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Gene Knockdown Techniques , Genes, Fungal , Metabolome , Minichromosome Maintenance 1 Protein/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Shelterin Complex , Telomere-Binding Proteins/metabolism , Transcription Factors/metabolism
5.
J Biol Chem ; 289(46): 32081-32093, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25294875

ABSTRACT

Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence.


Subject(s)
Cellular Senescence , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Amino Acids/chemistry , Amino Acids, Branched-Chain/chemistry , Citric Acid Cycle , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Gene Expression Regulation, Fungal , Metabolomics , Oligonucleotide Array Sequence Analysis , Pyruvic Acid/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomycetales , Transcriptome
6.
Biochem Biophys Res Commun ; 407(1): 185-90, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21371425

ABSTRACT

Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomyces cerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of (1)H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest reduced activity of the GABA-metabolizing enzymes extends lifespan by shifting carbon metabolism toward respiration, as calorie restriction does.


Subject(s)
4-Aminobutyrate Transaminase/metabolism , Cellular Senescence/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism , 4-Aminobutyrate Transaminase/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Time Factors , Transcription Factors/genetics , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL