Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Nutr ; 9: 1040444, 2022.
Article in English | MEDLINE | ID: mdl-36386942

ABSTRACT

The increase of whole-body energy expenditure seen after a single meal ingestion, referred to as diet-induced thermogenesis (DIT), substantially varies depending on the meal's macronutrient composition. Brown adipose tissue (BAT), a site of non-shivering thermogenesis, was reported to be involved in DIT. To examine the effects of meal composition on BAT-associated DIT in humans, healthy male participants underwent fluorodeoxyglucose-positron emission tomography to assess BAT activity, and respiratory gas analysis for 2 h after ingestion of a carbohydrate-, protein-, or fat-rich meal (C-meal, P-meal, and F-meal, respectively). The calculated DIT at 2 h was 6.44 ± 2.01%, 3.49 ± 2.00%, and 2.32 ± 0.90% of the ingested energy after the P-meal, C-meal, and F-meal, respectively. The DIT after C-meal ingestion correlated positively with BAT activity (P = 0.011), and was approximately twice greater in the group with high-BAT activity than in the group with low-BAT activity (4.35 ± 1.74% vs. 2.12 ± 1.76%, P < 0.035). Conversely, the DIT after F-meal or P-meal ingestion did not correlate with BAT activity, with no difference between the two groups. Thus, BAT has a significant role in DIT after ingestion of a carbohydrate-rich meal, but hardly after ingestion either protein- or fat-rich meal.

2.
J Nutr Sci Vitaminol (Tokyo) ; 67(2): 99-104, 2021.
Article in English | MEDLINE | ID: mdl-33952741

ABSTRACT

Increasing adaptive thermogenesis through the activation of brown adipose tissue (BAT) is a promising practical strategy for preventing obesity and related disorders. Ingestion of a single dose of 40 mg of an extract of Grains of Paradise (GP), a ginger family species, reportedly triggers BAT thermogenesis in individuals with high but not in those with low BAT activity. We hypothesized that prolonged treatment with GP might revive BAT in individuals who have lost active BAT. In the present study, we recruited 9 healthy young male volunteers with reduced BAT that was assessed by fluorodeoxyglucose positron emission tomography and computed tomography (FDG-PET/CT) following 2-h cold exposure at 19ºC. The subjects ingested GP extract (40 mg/d) or placebo every day for 5 wk. Before and after the treatment with either GP or placebo, their body composition and BAT-dependent cold-induced thermogenesis (CIT)-a non-invasive index of BAT-were measured in a single-blinded, randomized, placebo-controlled cross-over design. Their whole-body resting energy expenditure at a thermoneutral condition remained unchanged following GP treatment. However, CIT after treatment was significantly higher in GP-treated individuals than in placebo-treated individuals. Body weight and fat-free mass did not change significantly following GP or placebo treatment. Notably, body fat percentage slightly but significantly decreased after GP treatment but not after placebo treatment. These results suggest that repeated ingestion of GP elevates adaptive thermogenesis through the re-activation of BAT, thereby reducing body fat in individuals with low BAT activity.


Subject(s)
Adipose Tissue, Brown , Zingiberaceae , Adipose Tissue, Brown/metabolism , Cold Temperature , Energy Metabolism , Humans , Plant Extracts/metabolism , Plant Extracts/pharmacology , Positron Emission Tomography Computed Tomography , Thermogenesis
3.
Eur J Appl Physiol ; 120(12): 2737-2747, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32948898

ABSTRACT

PURPOSE: Human brown adipose tissue (BAT) is known to be a significant thermoeffector in non-shivering thermogenesis (NST), albeit with individual variations in the BAT activity. We hypothesized that humans with less BAT would have more contribution from the skeletal muscle (SM) to NST or earlier shivering onset and greater vasoconstriction to compensate for less BAT-mediated thermogenesis. METHODS: Eighteen males participated in this study. Their BAT activity and detectable volume were investigated. A gradual cold exposure was conducted for inducing NST at 18.6 °C and initiating shivering at 11.6 °C. The energy expenditure, electromyograph of the pectoralis major, skin blood flow, and rectal (Tre) and skin temperatures were evaluated. RESULTS: BAT volume significantly correlated with the change in metabolic heat production during mild cold phase relative to baseline (NST; r = 0.562, P < 0.05), but not with shivering initiation phase (NST+ ST). SM mass correlated with baseline metabolic heat production (Mbase; r = 0.839, P < 0.01) but not with NST or NST + ST. A positive correlation was noted between BAT volume and Tre at the end of the 18.6 °C exposure period (r = 0.586, P < 0.05), which positively correlated with shivering onset time (r = 0.553, P < 0.05). The skin blood flow, mean skin temperature, and forearm and finger skin temperature difference at the end of the 18.6 °C exposure period did not correlate with NST or BAT volume. CONCLUSION: BAT volume positively correlated with NST. Notably, lower Tre in individuals with less BAT volume induced earlier shivering onset for offsetting the less NST. Whereas, no correlation between metabolic and vasomotor responses was observed.


Subject(s)
Shivering/physiology , Thermogenesis/physiology , Acclimatization/physiology , Adipose Tissue, Brown/physiology , Adult , Cold Temperature , Energy Metabolism/physiology , Humans , Male , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Young Adult
4.
Am J Clin Nutr ; 105(4): 873-881, 2017 04.
Article in English | MEDLINE | ID: mdl-28275131

ABSTRACT

Background: The thermogenic effects of green tea catechin have been repeatedly reported, but their mechanisms are poorly understood.Objective: The aim of this study was to investigate the acute and chronic effects of catechin on brown adipose tissue (BAT), a site specialized for nonshivering thermogenesis, in humans.Design: Fifteen healthy male volunteers underwent fluorodeoxyglucose-positron emission tomography to assess BAT activity. To examine the acute catechin effect, whole-body energy expenditure (EE) after a single oral ingestion of a beverage containing 615 mg catechin and 77 mg caffeine (catechin beverage) was measured. Next, to investigate the chronic catechin effects, 10 men with low BAT activity were enrolled. Before and after ingestion of the catechin beverage 2 times/d for 5 wk, cold-induced thermogenesis (CIT) after 2 h of cold exposure at 19°C, which is proportional to BAT activity, was examined. Both the acute and chronic trials were single-blinded, randomized, placebo-controlled, season-matched crossover studies.Results: A single ingestion of the catechin beverage increased EE in 9 subjects who had metabolically active BAT (mean ± SEM: +15.24 ± 1.48 kcal, P < 0.01) but not in 6 subjects who had negligible activities (mean ± SEM: +3.42 ± 2.68 kcal). The ingestion of a placebo beverage containing 82 mg caffeine produced a smaller and comparative EE response in the 2 subject groups. Multivariate regression analysis revealed a significant interaction between BAT and catechin on EE (ß = 0.496, P = 0.003). Daily ingestion of the catechin beverage elevated mean ± SEM CIT (from 92.0 ± 26.5 to 197.9 ± 27.7 kcal/d; P = 0.009), whereas the placebo beverage did not change it.Conclusion: Orally ingested tea catechin with caffeine acutely increases EE associated with increased BAT activity and chronically elevates nonshivering CIT, probably because of the recruitment of BAT, in humans. These trials were registered at www.umin.ac.jp/ctr/ as UMIN000016361.


Subject(s)
Adipose Tissue, Brown/drug effects , Caffeine/pharmacology , Camellia sinensis/chemistry , Catechin/pharmacology , Cold Temperature , Tea/chemistry , Thermogenesis/drug effects , Adaptation, Physiological/drug effects , Adult , Cross-Over Studies , Energy Metabolism , Humans , Male , Plant Extracts/pharmacology , Single-Blind Method , Young Adult
5.
J Biomed Opt ; 21(9): 091305, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27135066

ABSTRACT

18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDGPET/CT) is widely used as a standard method for evaluating human brown adipose tissue (BAT), a recognized therapeutic target of obesity. However, a longitudinal BAT study using FDG-PET/CT is lacking owing to limitations of the method. Near-infrared time-resolved spectroscopy (NIR(TRS)) is a technique for evaluating human BAT density noninvasively. This study aimed to test whether NIRTRS could detect changes in BAT density during or after long-term intervention. First, using FDG-PET/CT, we confirmed a significant increase (+48.8%, P < 0.05) in BAT activity in the supraclavicular region after 6-week treatment with thermogenic capsaicin analogs, capsinoids. Next, 20 volunteers were administered either capsinoids or placebo daily for 8 weeks in a double-blind design, and BAT density was measured using NIR(TRS) every 2 weeks during the 8-week treatment period and an 8-week period after stopping treatment. Consistent with FDG-PET/CT results, NIR(TRS) successfully detected an increase in BAT density during the 8-week treatment (+46.4%, P < 0.05), and a decrease in the 8-week follow-up period (-12.5%, P = 0.07), only in the capsinoid-treated, but not the placebo, group. Thus, NIR(TRS) can be applied for quantitative assessment of BAT in longitudinal intervention studies in humans.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/diagnostic imaging , Capsaicin/pharmacology , Spectroscopy, Near-Infrared/methods , Adipose Tissue, Brown/physiology , Administration, Oral , Adult , Capsaicin/administration & dosage , Double-Blind Method , Female , Humans , Male , Positron Emission Tomography Computed Tomography , Young Adult
6.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R999-R1009, 2016 05.
Article in English | MEDLINE | ID: mdl-27030666

ABSTRACT

Brown adipose tissue (BAT) contributes to whole-body energy expenditure (EE), especially cold-induced thermogenesis (CIT), in humans. Although it is known that EE and CIT vary seasonally, their relationship with BAT has not been investigated. In the present study, we examined the impact of BAT on seasonal variations of EE/CIT and thermal responses to cold exposure in a randomized crossover design. Forty-five healthy male volunteers participated, and their BAT was assessed by positron emission tomography and computed tomography. CIT, the difference of EE at 27ºC and after 2-h cold exposure at 19ºC, significantly increased in winter compared to summer, being greater in subjects with metabolically active BAT (High BAT, 185.6 kcal/d, 18.3 kcal/d, P<0.001) than those without (Low BAT, 90.6 kcal/d, -46.5 kcal/d, P<0.05). Multivariate regression analysis revealed a significant interaction effect between season and BAT on CIT (P<0.001). The cold-induced drop of tympanic temperature (Tty) and skin temperature (Tskin) in the forehead region and in the supraclavicular region close to BAT deposits were smaller in the High BAT group than in the Low BAT group in winter but not in summer. In contrast, the drop of Tskinin the subclavicular and peripheral regions distant from BAT was similar in the two groups in both seasons. In conclusion, CIT increased from summer to winter in a BAT-dependent manner, paralleling cold-induced changes in Tty/Tskin, indicating a role of BAT in seasonal changes in the thermogenic and thermal responses to cold exposure in humans.

7.
J Nutr Sci Vitaminol (Tokyo) ; 61(1): 79-83, 2015.
Article in English | MEDLINE | ID: mdl-25994142

ABSTRACT

Kaempferia parviflora extract (KP) has been reported to have a preventive effect on obesity in mice, probably by increasing energy expenditure (EE). The aims of the current study were to examine the acute effects of KP ingestion on whole-body EE in humans and to analyze its relation to the activity of brown adipose tissue (BAT), a site of non-shivering thermogenesis. After an oral ingestion of an ethanol extract of KP, EE increased significantly, showing a maximal increase of 229±69 kJ/d at 60 min, while it did not change after placebo ingestion. To evaluate BAT activity, the subjects underwent fluorodeoxyglucose-positron emission tomography, and divided into two groups with high- and low-BAT activities. A similar and greater response of EE to KP ingestion was observed in the high-BAT group (351±50 kJ/d at 60 min), but not in the low activity group. Placebo ingestion did not cause any significant EE change in either group. These results indicate that a single oral ingestion of the KP extract can potentially increase whole-body EE probably through the activation of BAT in healthy men, and may be useful as an anti-obesity regimen.


Subject(s)
Adipose Tissue, Brown/drug effects , Energy Metabolism/drug effects , Obesity/metabolism , Plant Extracts/pharmacology , Thermogenesis/drug effects , Zingiberaceae , Adipose Tissue, Brown/metabolism , Adult , Humans , Male , Obesity/prevention & control , Phytotherapy , Plant Extracts/therapeutic use , Positron-Emission Tomography/methods , Young Adult
8.
J Clin Invest ; 123(8): 3404-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23867622

ABSTRACT

Brown adipose tissue (BAT) burns fat to produce heat when the body is exposed to cold and plays a role in energy metabolism. Using fluorodeoxyglucose-positron emission tomography and computed tomography, we previously reported that BAT decreases with age and thereby accelerates age-related accumulation of body fat in humans. Thus, the recruitment of BAT may be effective for body fat reduction. In this study, we examined the effects of repeated stimulation by cold and capsinoids (nonpungent capsaicin analogs) in healthy human subjects with low BAT activity. Acute cold exposure at 19°C for 2 hours increased energy expenditure (EE). Cold-induced increments of EE (CIT) strongly correlated with BAT activity independently of age and fat-free mass. Daily 2-hour cold exposure at 17°C for 6 weeks resulted in a parallel increase in BAT activity and CIT and a concomitant decrease in body fat mass. Changes in BAT activity and body fat mass were negatively correlated. Similarly, daily ingestion of capsinoids for 6 weeks increased CIT. These results demonstrate that human BAT can be recruited even in individuals with decreased BAT activity, thereby contributing to body fat reduction.


Subject(s)
Adipose Tissue, Brown/metabolism , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Obesity/metabolism , Plant Extracts/pharmacology , Acclimatization , Adipose Tissue, Brown/diagnostic imaging , Adipose Tissue, Brown/drug effects , Adult , Body Composition/drug effects , Cold Temperature , Cross-Over Studies , Energy Metabolism , Fluorodeoxyglucose F18/metabolism , Humans , Male , Multimodal Imaging , Obesity/pathology , Obesity/therapy , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Single-Blind Method , Tomography, X-Ray Computed , Young Adult
9.
Br J Nutr ; 110(4): 733-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23308394

ABSTRACT

Brown adipose tissue (BAT) is responsible for cold- and diet-induced thermogenesis, and thereby contributes to the control of whole-body energy expenditure (EE) and body fat content. BAT activity can be assessed by fluoro-2-deoxyglucose (FDG)-positron emission tomography (PET) in human subjects. Grains of paradise (GP, Aframomum melegueta), a species of the ginger family, contain pungent, aromatic ketones such as 6-paradol, 6-gingerol and 6-shogaol. An alcohol extract of GP seeds and 6-paradol are known to activate BAT thermogenesis in small rodents. The present study aimed to examine the effects of the GP extract on whole-body EE and to analyse its relation to BAT activity in men. A total of nineteen healthy male volunteers aged 20-32 years underwent FDG-PET after 2 h of exposure to cold at 19°C with light clothing. A total of twelve subjects showed marked FDG uptake into the adipose tissue of the supraclavicular and paraspinal regions (BAT positive). The remaining seven showed no detectable uptake (BAT negative). Within 4 weeks after the FDG-PET examination, whole-body EE was measured at 27°C before and after oral ingestion of GP extract (40 mg) in a single-blind, randomised, placebo-controlled, crossover design. The resting EE of the BAT-positive group did not differ from that of the BAT-negative group. After GP extract ingestion, the EE of the BAT-positive group increased within 2 h to a significantly greater (P<0·01) level than that of the BAT-negative group. Placebo ingestion produced no significant change in EE. These results suggest that oral ingestion of GP extract increases whole-body EE through the activation of BAT in human subjects.


Subject(s)
Adipose Tissue, Brown/metabolism , Dietary Supplements , Energy Metabolism/drug effects , Plant Extracts/pharmacology , Zingiberaceae/chemistry , Adipose Tissue , Adipose Tissue, Brown/drug effects , Adult , Anthropometry , Calorimetry, Indirect , Cross-Over Studies , Diet , Fluorodeoxyglucose F18 , Guaiacol/analogs & derivatives , Guaiacol/metabolism , Humans , Ketones/chemistry , Ketones/metabolism , Male , Positron-Emission Tomography , Seeds/metabolism , Single-Blind Method , Temperature , Time Factors , Young Adult
10.
Obesity (Silver Spring) ; 19(9): 1755-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21566561

ABSTRACT

Brown adipose tissue (BAT) can be identified by (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) combined with X-ray computed tomography (CT) in adult humans. The objective of this study was to clarify the relationship between BAT and adiposity in healthy adult humans, particularly to test the idea that decreased BAT activity may be associated with body fat accumulation with age. One hundred and sixty-two healthy volunteers aged 20-73 years (103 males and 59 females) underwent FDG-PET/CT after 2-h cold exposure at 19 °C with light clothing. Cold-activated BAT was detected in 41% of the subjects (BAT-positive). Compared with the BAT-negative group, the BAT-positive group was younger (P < 0.01) and showed a lower BMI (P < 0.01), body fat content (P < 0.01), and abdominal fat (P < 0.01). The incidence of cold-activated BAT decreased with age (P < 0.01), being more than 50% in the twenties, but less than 10% in the fifties and sixties. The adiposity-related parameters showed some sex differences, but increased with age in the BAT-negative group (P < 0.01), while they remained unchanged from the twenties to forties in the BAT-positive group, in both sexes. These results suggest that decreased BAT activity may be associated with accumulation of body fat with age.


Subject(s)
Adipose Tissue, Brown/growth & development , Adipose Tissue, Brown/metabolism , Adipose Tissue/growth & development , Adiposity , Aging , Abdominal Fat/growth & development , Abdominal Fat/metabolism , Adipose Tissue/metabolism , Adult , Aged , Aging/metabolism , Body Mass Index , Cold Temperature , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Male , Middle Aged , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Sex Characteristics , Tissue Distribution , Tomography, X-Ray Computed , Whole Body Imaging , Young Adult
11.
Obesity (Silver Spring) ; 19(1): 13-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20448535

ABSTRACT

Brown adipose tissue (BAT) can be identified by (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) in adult humans. Thirteen healthy male volunteers aged 20-28 years underwent FDG-PET after 2-h cold exposure at 19 °C with light-clothing and intermittently putting their legs on an ice block. When exposed to cold, 6 out of the 13 subjects showed marked FDG uptake into adipose tissue of the supraclavicular and paraspinal regions (BAT-positive group), whereas the remaining seven showed no detectable uptake (BAT-negative group). The BMI and body fat content were similar in the two groups. Under warm conditions at 27 °C, the energy expenditure of the BAT-positive group estimated by indirect calorimetry was 1,446 ± 97 kcal/day, being comparable with that of the BAT-negative group (1,434 ± 246 kcal/day). After cold exposure, the energy expenditure increased markedly by 410 ± 293 (P < 0.05) and slightly by 42 ± 114 kcal/day (P = 0.37) in the BAT-positive and -negative groups, respectively. A positive correlation (P < 0.05) was found between the cold-induced rise in energy expenditure and the BAT activity quantified from FDG uptake. After cold exposure, the skin temperature in the supraclavicular region close to BAT deposits dropped by 0.14 °C in the BAT-positive group, whereas it dropped more markedly (P < 0.01) by 0.60 °C in the BAT-negative group. The skin temperature drop in other regions apart from BAT deposits was similar in the two groups. These results suggest that BAT is involved in cold-induced increases in whole-body energy expenditure, and, thereby, the control of body temperature and adiposity in adult humans.


Subject(s)
Adipose Tissue, Brown/metabolism , Energy Metabolism/physiology , Thermogenesis/physiology , Adolescent , Adult , Body Temperature/physiology , Fluorodeoxyglucose F18/pharmacokinetics , Health , Humans , Male , Positron-Emission Tomography , Skin Temperature/physiology , Young Adult
12.
Diabetes ; 58(7): 1526-31, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19401428

ABSTRACT

OBJECTIVE: The significant roles of brown adipose tissue (BAT) in the regulation of energy expenditure and adiposity are established in small rodents but have been controversial in humans. The objective is to examine the prevalence of metabolically active BAT in healthy adult humans and to clarify the effects of cold exposure and adiposity. RESEARCH DESIGN AND METHODS: In vivo 2-[(18)F]fluoro-2-deoxyglucose (FDG) uptake into adipose tissue was measured in 56 healthy volunteers (31 male and 25 female subjects) aged 23-65 years by positron emission tomography (PET) combined with X-ray computed tomography (CT). RESULTS: When exposed to cold (19 degrees C) for 2 h, 17 of 32 younger subjects (aged 23-35 years) and 2 of 24 elderly subjects (aged 38-65 years) showed a substantial FDG uptake into adipose tissue of the supraclavicular and paraspinal regions, whereas they showed no detectable uptake when kept warm (27 degrees C). Histological examinations confirmed the presence of brown adipocytes in these regions. The cold-activated FDG uptake was increased in winter compared with summer (P < 0.001) and was inversely related to BMI (P < 0.001) and total (P < 0.01) and visceral (P < 0.001) fat areas estimated from CT image at the umbilical level. CONCLUSIONS: Our findings, being against the conventional view, indicate the high incidence of metabolically active BAT in adult humans and suggest a role in the control of body temperature and adiposity.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue/metabolism , Cold Temperature , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/diagnostic imaging , Adipose Tissue, Brown/anatomy & histology , Adipose Tissue, Brown/diagnostic imaging , Adult , Autopsy , Environmental Exposure , Female , Fluorodeoxyglucose F18/metabolism , Humans , Male , Positron-Emission Tomography , Reference Values , Seasons , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...