Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 816: 151573, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774626

ABSTRACT

Accidental leakage of radionuclides from the Fukushima Nuclear Power Plant (FNPP1) took place in the aftermath of the catastrophic tsunamis associated with the Great East Japan Earthquake that occurred on March 11, 2011. Significant amount of radionuclides released into the atmosphere were reportedly transported and deposited on land located near FNPP1. The Niida River, Fukushima, Japan, has been recognized as a terrestrial source of highly contaminated suspended radiocesium adhering to sediment particles in the ocean through the river mouth as a result of hydrological processes. Remaining scientific questions include the oceanic dispersal and inventories of the sediments and suspended radiocesium in the ocean floor derived from the Niida River. Complementing limited in situ data, we developed a quadruple nested 3D ocean circulation and sediment transport model in an extremely high-resolution configuration to quantify the transport processes of the suspended radiocesium. Particularly, we investigated the storm and subsequent floods associated with Typhoon 201326 (Wipha) that passed off the Fukushima coast in October 2013, and subsequently promoted precipitation to a considerable extent and associated riverine freshwater discharge along with sediment outfluxes to the ocean. Using in situ bed sediment core data obtained from regions near the river mouth, we conducted a quantitative assessment of the accumulation and erosion of the sediments and explored the resultant suspended radiocesium distribution around the river mouth and nearshore areas along the Fukushima coast. We identified three major accumulative areas, near the river mouth within an area < 1 km, around the breakwaters in the north of the river mouth, and along the southern coastal area, while offshore and northward transports were minor. The present study clearly exhibits substantial retention of the land-derived radiocesium adsorbed to the sediments in the coastal areas, leading to possible long-term influences on the surrounding marine environment.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Floods , Japan , Rivers , Water Pollutants, Radioactive/analysis
2.
J Environ Radioact ; 238-239: 106724, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34488016

ABSTRACT

We developed a three-dimensional prognostic oceanic dispersion model that accounted for the phase transfer of radionuclides between seawater, suspended particles, and seabed sediments with multiscale grain sizes. A detailed hindcast of 137Cs in the seabed sediment off the Fukushima coast was conducted to investigate the transfer mechanism of dissolved 137Cs derived from the Fukushima Daiichi Nuclear Power Plant (FNPP1) accident toward the seabed sediment. Extensive model-data comparison demonstrated that the model could satisfactorily reproduce the oceanic structure and 137Cs concentrations in the seawater and seabed sediment. The model successfully reproduced the major features of the observed spatial variation of the 137Cs activities in the sediment, which represented more than 90% of the sedimentary radiocesium existing in the coastal area off Fukushima several months after the accident. Shear stress associated with the resuspension of the seabed sediment was induced by waves near the shore and by current velocity offshore of the study area. The adsorption of 137Cs on the seabed sediment differed depending on the particle size, with adsorption on clay being the most substantial. The distribution of 137Cs in the sediment off the Fukushima coast was formed mainly owing to adsorption from the dissolved phase by June 2011, when the impact of the direct oceanic 137Cs release from FNPP1 was remarkable. After June 2011, seabed sediment became a source of 137Cs released to the seawater owing to resuspension with and desorption from the sediment.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Japan , Nuclear Power Plants , Oceans and Seas , Water Pollutants, Radioactive/analysis
3.
Sci Rep ; 11(1): 6963, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772053

ABSTRACT

A massive coral bleaching event occurred in 2016 in the interior of Japan's largest coral lagoon, the Sekisei Lagoon, located in the Kuroshio upstream region in southwestern Japan. Recovery of the coral lagoon will require the influx of coral spawn and larvae; therefore, it is important to identify and conserve source sites. A surface-particle-tracking simulation of coral spawn and larvae was used to identify source areas of coral spawn outside of the Sekisei Lagoon for potential recovery of the interior lagoon. The northern coastal zone of Iriomote Island, including Hatoma Island, was identified as a major source area. Hatoma Island was also identified as a key source for the Kuroshio downstream region and for aiding the poleward migration of coral habitat under ongoing global climate change, making it one of the most important source areas in the Nansei Archipelago.


Subject(s)
Animal Migration , Anthozoa/growth & development , Climate Change , Coral Reefs , Animals , Ecosystem , Islands , Japan , Larva/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL