Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 22(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808268

ABSTRACT

This paper addresses the problem of optimal defense of a high-value unit (HVU) against a large-scale swarm attack. We discuss multiple models for intra-swarm cooperation strategies and provide a framework for combining these cooperative models with HVU tracking and adversarial interaction forces. We show that the problem of defending against a swarm attack can be cast in the framework of uncertain parameter optimal control. We discuss numerical solution methods, then derive a consistency result for the dual problem of this framework, providing a tool for verifying computational results. We also show that the dual conditions can be computed numerically, providing further computational utility. Finally, we apply these numerical results to derive optimal defender strategies against a 100-agent swarm attack.


Subject(s)
Gravitation , Uncertainty
2.
Sensors (Basel) ; 22(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35271016

ABSTRACT

This paper presents a method for the generation of trajectories for autonomous system operations. The proposed method is based on the use of Bernstein polynomial approximations to transcribe infinite dimensional optimization problems into nonlinear programming problems. These, in turn, can be solved using off-the-shelf optimization solvers. The main motivation for this approach is that Bernstein polynomials possess favorable geometric properties and yield computationally efficient algorithms that enable a trajectory planner to efficiently evaluate and enforce constraints along the vehicles' trajectories, including maximum speed and angular rates as well as minimum distance between trajectories and between the vehicles and obstacles. By virtue of these properties and algorithms, feasibility and safety constraints typically imposed on autonomous vehicle operations can be enforced and guaranteed independently of the order of the polynomials. To support the use of the proposed method we introduce BeBOT (Bernstein/Bézier Optimal Trajectories), an open-source toolbox that implements the operations and algorithms for Bernstein polynomials. We show that BeBOT can be used to efficiently generate feasible and collision-free trajectories for single and multiple vehicles, and can be deployed for real-time safety critical applications in complex environments.

SELECTION OF CITATIONS
SEARCH DETAIL