Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7925, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271664

ABSTRACT

Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewisx analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides. Subsequent incorporation of a subset of these glycans into nanoparticles or a microarray revealed a striking spectrum of distinct binding intensities across different proteins that recognise Lewisx. Notably, we show that for two proteins with unique binding sites for Lewisx, glycofluoroforms exhibited enhanced binding to one protein, whilst reduced binding to the other, with selectivity governed by fluorination patterns. We finally showcase the potential diagnostic utility of this approach in glycofluoroform-mediated bacterial toxin detection by lateral flow.


Subject(s)
Polysaccharides , Polysaccharides/metabolism , Polysaccharides/chemistry , Protein Binding , Binding Sites , Humans , Halogenation , Lewis X Antigen/metabolism , Lewis X Antigen/chemistry , Nanoparticles/chemistry
2.
Angew Chem Int Ed Engl ; 63(8): e202310862, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38072831

ABSTRACT

Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.


Subject(s)
Aminoacyltransferases , Peptidyl Transferases , Aminopeptidases , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Peptides/metabolism
3.
Bioconjug Chem ; 33(12): 2341-2347, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36356167

ABSTRACT

Staphylococcus aureus sortase A is a transpeptidase that has been extensively exploited for site-specific modification of proteins and was originally used to attach a labeling reagent containing an LPXTG recognition sequence to a protein or peptide with an N-terminal glycine. Sortase mutants with other recognition sequences have also been reported, but in all cases, the reversibility of the transpeptidation reaction limits the efficiency of sortase-mediated labeling reactions. For the wildtype sortase, depsipeptide substrates, in which the scissile peptide bond is replaced with an ester, allow effectively irreversible sortase-mediated labeling as the alcohol byproduct is a poor competing nucleophile. In this paper, the use of depsipeptide substrates for evolved sortase variants is reported. Substrate specificities of three sortases have been investigated allowing identification of an orthogonal pair of enzymes accepting LPEToG and LPESoG depsipeptides, which have been applied to dual N-terminal labeling of a model protein mutant containing a second, latent N-terminal glycine residue. The method provides an efficient orthogonal site-specific labeling technique that further expands the biochemical protein labeling toolkit.


Subject(s)
Aminoacyltransferases , Depsipeptides , Staphylococcus aureus , Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Glycine , Indicators and Reagents
SELECTION OF CITATIONS
SEARCH DETAIL