Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(12)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38138101

ABSTRACT

The incidence of oral cancer has recently been increasing worldwide, particularly among young individuals and women. The primary risk factors for head and neck cancers, including oral and pharyngeal cancers, are smoking, alcohol consumption, poor oral hygiene, and repeated exposure to mechanical stimuli. However, approximately one-third of the patients with oral and pharyngeal cancers are neither smokers nor drinkers, which points to the existence of other mechanisms. Recently, human microbes have been linked to various diseases, including cancer. Oral pathogens, especially periodontal pathobionts, are reported to play a role in the development of colon and other types of cancer. In this study, we employed a series of bioinformatics analyses to pinpoint Fusobacterium nucleatum as the predominant oral bacterial species in oral and pharyngeal cancer tissue samples. We successfully isolated Fn. polymorphum from the saliva of patients with oral cancer and demonstrated that Fn. polymorphum indeed promoted oral squamous cell carcinoma development by activating YAP in a mouse tongue cancer model. Our research offers scientific evidence for the role of the oral microbiome in oral cancer progression and provides insights that would help in devising preventative strategies against oral cancer, potentially by altering oral bacterial profiles.

2.
Sci Rep ; 13(1): 20555, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996472

ABSTRACT

Fatty acids play various physiological roles owing to their diverse structural characteristics, such as hydrocarbon chain length (HCL) and degree of saturation (DS). Although the distribution of fatty acids in biological tissues is associated with lipid metabolism, in situ imaging tools are still lacking for HCL and DS. Here, we introduce a framework of near-infrared (1000-1400 nm) hyperspectral label-free imaging with machine learning analysis of the fatty acid HCL and DS distribution in the liver at each pixel, in addition to the previously reported total lipid content. The training data of 16 typical fatty acids were obtained by gas chromatography from liver samples of mice fed with various diets. A two-dimensional mapping of these two parameters was successfully performed. Furthermore, the HCL/DS plot exhibited characteristic clustering among the different diet groups. Visualization of fatty acid distribution would provide insights for revealing the pathophysiological conditions of liver diseases and metabolism.


Subject(s)
Fatty Acids , Hyperspectral Imaging , Mice , Animals , Fatty Acids/metabolism , Liver/metabolism
3.
Hepatol Commun ; 7(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37639702

ABSTRACT

The gut and the liver are anatomically and physiologically connected, and this connection is called the "gut-liver axis," which exerts various influences on liver physiology and pathology. The gut microbiota has been recognized to trigger innate immunity and modulate the liver immune microenvironment. Gut microbiota influences the physiological processes in the host, such as metabolism, by acting on various signaling receptors and transcription factors through their metabolites and related molecules. The gut microbiota has also been increasingly recognized to modulate the efficacy of immune checkpoint inhibitors. In this review, we discuss recent updates on gut microbiota-associated mechanisms in the pathogenesis of chronic liver diseases such as NAFLD and NASH, as well as liver cancer, in light of the gut-liver axis. We particularly focus on gut microbial metabolites and components that are associated with these liver diseases. We also discuss the role of gut microbiota in modulating the response to immunotherapy in liver diseases.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/therapy , Tumor Microenvironment
4.
Biomolecules ; 12(12)2022 12 06.
Article in English | MEDLINE | ID: mdl-36551249

ABSTRACT

While topical corticosteroid (TCS) treatment is widely used for many skin diseases, it can trigger adverse side effects, and some of such effects can last for a long time after stopping the treatment. However, molecular changes induced by TCS treatment remain largely unexplored, although transient changes in histology and some major ECM components have been documented. Here, we investigated transcriptomic and proteomic changes induced by fluocinolone acetonide (FA) treatment in the mouse skin by conducting RNA-Seq and quantitative proteomics. Chronic FA treatment affected the expression of 4229 genes, where downregulated genes were involved in cell-cycle progression and ECM organization, and upregulated genes were involved in lipid metabolism. The effects of FA on transcriptome and histology of the skin largely returned to normal by two weeks after the treatment. Only a fraction of transcriptomic changes were reflected by proteomic changes, and the expression of 46 proteins was affected one day after chronic FA treatment. A comparable number of proteins were differentially expressed between control and FA-treated skin samples even at 15 and 30 days after stopping chronic FA treatment. Interestingly, proteins affected during and after chronic FA treatment were largely different. Our results provide fundamental information of molecular changes induced by FA treatment in the skin.


Subject(s)
Fluocinolone Acetonide , Transcriptome , Mice , Animals , Fluocinolone Acetonide/pharmacology , Fluocinolone Acetonide/therapeutic use , Proteomics , Skin/metabolism , Glucocorticoids/metabolism , Adrenal Cortex Hormones/metabolism
5.
Int Immunol ; 34(9): 467-474, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35652367

ABSTRACT

More than 500 species of microbiota reside in the human intestine and coexist with humans, their host. Gut microbial metabolites and components are absorbed from the intestine and influence cells in the liver, including hepatocytes and stromal cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, Kupffer cells, natural killer (NK) cells, NK T cells and other immune cells. This gut-originated axis to the liver is called the "gut-liver axis", which underscores the importance of the link between the gut and the liver. In this review, we discuss the gut microbial components and metabolites that affect cells in the liver, particularly in association with immune cells, and the related responses. We also highlight the mechanisms underlying gut microbiota-mediated liver carcinogenesis and discuss cancer prevention, including the recently clarified modulation of immune checkpoint inhibitor efficacy by the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Liver Neoplasms , Microbiota , Endothelial Cells/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Tumor Microenvironment
6.
Sci Immunol ; 7(72): eabl7209, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35749514

ABSTRACT

Long-term senescent cells exhibit a secretome termed the senescence-associated secretory phenotype (SASP). Although the mechanisms of SASP factor induction have been intensively studied, the release mechanism and how SASP factors influence tumorigenesis in the biological context remain unclear. In this study, using a mouse model of obesity-induced hepatocellular carcinoma (HCC), we identified the release mechanism of SASP factors, which include interleukin-1ß (IL-1ß)- and IL-1ß-dependent IL-33, from senescent hepatic stellate cells (HSCs) via gasdermin D (GSDMD) amino-terminal-mediated pore. We found that IL-33 was highly induced in senescent HSCs in an IL-1ß-dependent manner in the tumor microenvironment. The release of both IL-33 and IL-1ß was triggered by lipoteichoic acid (LTA), a cell wall component of gut microbiota that was transferred and accumulated in the liver tissue of high-fat diet-fed mice, and the release of these factors was mediated through cell membrane pores formed by the GSDMD amino terminus, which was cleaved by LTA-induced caspase-11. We demonstrated that IL-33 release from HSCs promoted HCC development via the activation of ST2-positive Treg cells in the liver tumor microenvironment. The accumulation of GSDMD amino terminus was also detected in HSCs from human NASH-associated HCC patients, suggesting that similar mechanism could be involved in a certain type of human HCC. These results uncover a release mechanism for SASP factors from sensitized senescent HSCs in the tumor microenvironment, thereby facilitating obesity-associated HCC progression. Furthermore, our findings highlight the therapeutic potential of inhibitors of GSDMD-mediated pore formation for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cellular Senescence , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Interleukin-33/metabolism , Mice , Obesity/complications , Obesity/metabolism , Tumor Microenvironment
7.
Hepatol Commun ; 6(8): 2090-2104, 2022 08.
Article in English | MEDLINE | ID: mdl-35429147

ABSTRACT

Hepatic encephalopathy (HE) is the neuropsychiatric complication of liver cirrhosis (LC). The influence of gut microbiota on HE pathogenesis has been suggested but not precisely elucidated. Here, we investigate how the gut microbial profile changed in patients with HE to clarify the functional gut microbial species associated with HE. We focused on their responses to rifaximin (RFX), a nonabsorbable antibiotic used in HE therapy. Feces samples were collected from patients with decompensated LC (all HE), patients with compensated LC, and healthy controls, and fecal gut microbial profiles were compared using 16S ribosomal RNA gene amplicon and metagenomic sequencing. The linear discriminant analysis effect size was used to identify specific species. Urease-positive Streptococcus salivarius, which can produce ammonia, was identified as the most significantly abundant gut microbiota in the HE group, and its ability to elevate the levels of blood ammonia as well as brain glutamine was experimentally verified in mice. Urease-negative Ruminococcus gnavus was also identified as a significantly abundant species in patients with RFX-nonresponsive HE after RFX administration. Interestingly, R. gnavus enhanced urease activity of recombinant urease itself, implying that R. gnavus could amplify ammonia production of surrounding urease-positive microbiota. Furthermore, the sensitivity of S. salivarius and R. gnavus to RFX depended on conjugated secondary bile acid levels, suggesting a therapeutic potential of the combined use of secondary bile acid levels with RFX for enhancing the efficacy of RFX. This study identified specific gut bacterial species abundant in patients with HE and verified their functions linked to HE pathophysiology. Targeting these bacteria could be a potentially effective strategy to treat HE.


Subject(s)
Gastrointestinal Microbiome , Hepatic Encephalopathy , Rifaximin , Ammonia/metabolism , Animals , Bacteria , Bile Acids and Salts/metabolism , Hepatic Encephalopathy/drug therapy , Humans , Liver Cirrhosis/complications , Mice , Rifaximin/therapeutic use , Urease/metabolism
8.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35029658

ABSTRACT

Worldwide prevalence of obesity is associated with the increase of lifestyle-related diseases. The accumulation of intermuscular adipose tissue (IMAT) is considered a major problem whereby obesity leads to sarcopenia and metabolic disorders and thus is a promising target for treating these pathological conditions. However, whereas obesity-associated IMAT is suggested to originate from PDGFRα+ mesenchymal progenitors, the processes underlying this adipogenesis remain largely unexplored. Here, we comprehensively investigated intra- and extracellular changes associated with these processes using single-cell RNA sequencing and mass spectrometry. Our single-cell RNA sequencing analysis identified a small PDGFRα+ cell population in obese mice directed strongly toward adipogenesis. Proteomic analysis showed that the appearance of this cell population is accompanied by an increase in galectin-3 in interstitial environments, which was found to activate adipogenic PPARγ signals in PDGFRα+ cells. Moreover, IMAT formation during muscle regeneration was significantly suppressed in galectin-3 knockout mice. Our findings, together with these multi-omics datasets, could unravel microenvironmental networks during muscle regeneration highlighting possible therapeutic targets against IMAT formation in obesity.


Subject(s)
Adipose Tissue/metabolism , Galectin 3/metabolism , Muscle, Skeletal/physiology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Actins/genetics , Actins/metabolism , Adipogenesis , Adipose Tissue/cytology , Animals , Cardiotoxins/pharmacology , Cell Differentiation , Cellular Senescence/genetics , Diet, High-Fat , Female , Galectin 3/deficiency , Galectin 3/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Obesity/metabolism , Obesity/pathology , PPAR gamma/metabolism , Receptor, Platelet-Derived Growth Factor alpha/deficiency , Receptor, Platelet-Derived Growth Factor alpha/genetics , Regeneration , Signal Transduction/genetics
9.
Microorganisms ; 9(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064634

ABSTRACT

Preterm birth (PTB) and threatened preterm labor (TPL), an important pre-PTB state, are major obstetric complications during pregnancy. However, their triggers have not been fully elucidated. The vagina is dominated by Lactobacillus species (categorized as community state types; CSTs I, II, III, and V) or by mixed anaerobes (CST IV). An abundance of the latter is associated with bacterial vaginosis (BV) and BV-triggered PTB/TPL. To identify factors that influence the diversity of vaginal microbiota associated with BV and CST IV (BV-type) bacterial profile, we performed a bioinformatic analysis of the microbial taxa using 16S rRNA amplicon sequencing data of bacterial genome in oral, vaginal, and rectal samples collected from 58 pregnant Japanese women. Interestingly, common residence of BV-associated bacteria in the vagina and rectum was individually detected in the CST IV (non-Lactobacillus dominated) group by species-level Spearman correlation coefficient analysis, suggesting that the rectum acts as a reservoir of BV-associated bacterial species in the CST IV group. The current study provides evidence of bacterial co-residence in vagina and rectum in the non-Lactobacillus dominated group, which could be targeted to reduce the risk of preterm incidence in pregnancy.

10.
Biomed Opt Express ; 12(2): 823-835, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33680544

ABSTRACT

Lipid distribution in the liver provides crucial information for diagnosing the severity of fatty liver and fatty liver-associated liver cancer. Therefore, a noninvasive, label-free, and quantitative modality is eagerly anticipated. We report near-infrared hyperspectral imaging for the quantitative visualization of lipid content in mouse liver based on partial least square regression (PLSR) and support vector regression (SVR). Analysis results indicate that SVR with standard normal variate pretreatment outperforms PLSR by achieving better root mean square error (15.3 mg/g) and higher determination coefficient (0.97). The quantitative mapping of lipid content in the mouse liver is realized using SVR.

11.
Food Chem Toxicol ; 122: 172-180, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316843

ABSTRACT

Previously we demonstrated the anti-tumorigenic, anti-mutagenic and anti-inflammatory effects of the juice of Vitis coignetiae (yamabudo), and identified caftaric acid as an anti-mutagenic component from the juice. In the present study, we investigated the isolation of anti-inflammatory components in yamabudo juice supposing that the anti-inflammatory components in yamabudo are also responsible for the anti-tumorigenic activity. The suppressing effect on nitric oxide production in mouse leukemic monocyte with LPS was used as a separation marker. Three components comprising 2,6-dimethoxy-1,4-benzoquinone (DBQ), fertaric acid and caftaric acid were isolated and identified from the juice of V. coignetiae as anti-inflammatory ingredients. Inhibitory effects were found of DBQ on the mutagenicity of dimethylbenzo[a]anthracene, aflatoxin B1, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the Ames test. Topical application of DBA significantly inhibited TPA-induced edema of mouse ears. The anti-tumorigenic effect of DBQ on the promotion and initiation stages of mouse skin tumorigenesis was investigated, and topical administration of DBQ on the promotion stage significantly decreased tumor development in mice skin. DBQ is a potential candidate for the chemopreventive effect of V. coignetiae.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anticarcinogenic Agents/isolation & purification , Anticarcinogenic Agents/pharmacology , Antimutagenic Agents/isolation & purification , Antimutagenic Agents/pharmacology , Benzoquinones/isolation & purification , Benzoquinones/pharmacology , Vitis/chemistry , Aflatoxin B1/toxicity , Animals , Benzoquinones/administration & dosage , Edema/chemically induced , Female , Male , Mice , Monocytes/drug effects , Monocytes/metabolism , Mutagens/toxicity , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Phenols/isolation & purification , Phenols/pharmacology , Skin Neoplasms/prevention & control , Tetradecanoylphorbol Acetate
12.
Nat Immunol ; 19(7): 755-765, 2018 07.
Article in English | MEDLINE | ID: mdl-29915298

ABSTRACT

The cytokines IL-17A and IL-17F have 50% amino-acid identity and bind the same receptor; however, their functional differences have remained obscure. Here we found that Il17f-/- mice resisted chemically induced colitis, but Il17a-/- mice did not, and that Il17f-/- CD45RBhiCD4+ T cells induced milder colitis in lymphocyte-deficient Rag2-/- mice, accompanied by an increase in intestinal regulatory T cells (Treg cells). Clostridium cluster XIVa in colonic microbiota capable of inducing Treg cells was increased in both Il17f-/- mice and mice given transfer Il17f-/- T cells, due to decreased expression of a group of antimicrobial proteins. There was substantial production of IL-17F, but not of IL-17A, not only by naive T cells but also by various colon-resident cells under physiological conditions. Furthermore, antibody to IL-17F suppressed the development of colitis, but antibody to IL-17A did not. These observations suggest that IL-17F is an effective target for the treatment of colitis.


Subject(s)
Colitis/immunology , Gastrointestinal Microbiome , Interleukin-17/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Animals , Cells, Cultured , Clostridium/growth & development , Clostridium/isolation & purification , Colitis/drug therapy , Interleukin-17/genetics , Interleukin-17/physiology , Intestines/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phospholipases A2/biosynthesis , Phospholipases A2/genetics , Prevotella/isolation & purification , Ribonuclease, Pancreatic/biosynthesis , Ribonuclease, Pancreatic/genetics , beta-Defensins/biosynthesis
13.
Sci Rep ; 7: 40447, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071766

ABSTRACT

Advances in Next Generation Sequencing technologies have enabled the generation of millions of sequences from microorganisms. However, distinguishing the sequence of a novel species from sequencing errors remains a technical challenge when the novel species is highly divergent from the closest known species. To solve such a problem, we developed a new method called Optimistic Protein Assembly from Reads (OPAR). This method is based on the assumption that protein sequences could be more conserved than the nucleotide sequences encoding them. By taking advantage of metagenomics, bioinformatics and conventional Sanger sequencing, our method successfully identified all coding regions of the mouse picobirnavirus for the first time. The salvaged sequences indicated that segment 1 of this virus was more divergent from its homologues in other Picobirnaviridae species than segment 2. For this reason, only segment 2 of mouse picobirnavirus has been detected in previous studies. OPAR web tool is available at http://bioinformatics.czc.hokudai.ac.jp/opar/.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Picobirnavirus/genetics , Viral Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Female , Genome, Viral , Mice, Inbred BALB C , Phylogeny
14.
Front Immunol ; 7: 601, 2016.
Article in English | MEDLINE | ID: mdl-28018362

ABSTRACT

Probiotics, such as lactic acid bacteria (LAB) and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60) transgenic mouse line and established 5D (x, y, z, time, and Ca2+) intravital imaging systems of lymphoid tissues including those in Peyer's patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed B. subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.

15.
Microorganisms ; 5(1)2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28025548

ABSTRACT

Lactic acid bacteria (LAB) form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552) and Streptococcus thermophilus ME-553 (ME553). In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ) and interleukin 17 (IL-17) produced by cluster of differentiation (CD) 4⁺ T cells from Peyer's patches (PPs) were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity.

16.
Cell Host Microbe ; 18(2): 183-97, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26269954

ABSTRACT

Dectin-1, the receptor for ß-glucans, protects the host against fungal infection; however, its role in intestinal immunity is incompletely understood. We found that Dectin-1-deficient (Clec7a(-/-)) mice were refractory to both dextran sodium sulfate (DSS)- and CD45RB(high)CD4(+) T cell-induced colitis, and that this resistance was associated with an increase in regulatory T (Treg) cells. The proportion of lactobacilli, especially Lactobacillus murinus, in the commensal microflora was increased in Clec7a(-/-) mouse colons, and accompanied by a decrease in antimicrobial peptides induced by Dectin-1 signaling. L. murinus colonization increased Treg cells in the colon. Oral administration of laminarin, a Dectin-1 antagonist, suppressed the development of DSS-colitis, associated with an increase of L. murinus and Treg cells. Human patients with inflammatory bowel disease were found to have a decreased proportion of closely related Lactobacillus species. These observations suggest that Dectin-1 regulates the homeostasis of intestinal immunity by controlling Treg cell differentiation through modification of microbiota.


Subject(s)
Colitis/pathology , Colon/immunology , Colon/pathology , Lactobacillus/immunology , Lectins, C-Type/antagonists & inhibitors , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Animals , Lectins, C-Type/genetics , Mice , Mice, Knockout
17.
Nutr Cancer ; 65(3): 440-50, 2013.
Article in English | MEDLINE | ID: mdl-23530644

ABSTRACT

Our study revealed the inhibitory effect of Vitis coignetiae Pulliat, known as Yamabudo in Japan, at the stages of multi-step carcinogenesis. The juice of Vitis coignetiae (Y-grape juice) was antimutagenic toward dimethylbenzo[a]anthracene (DMBA), aflatoxin B1, and benzo[a]pyrene in the Ames test. The Y-grape juice was also antigenotoxic in the micronucleus test using HepG2 cells toward DMBA and aflatoxin B1. Topical and oral administration of the Y-grape juice to mice inhibited the induction of inflammation of 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical and oral administration of the Y-grape juice significantly decreased the incidence and mean number of tumors in mice skin with the 2-stage tumorigenesis protocol. To elucidate the mechanisms underlying the antiinflammatory and antitumor promotion activity of the Y-grape juice, the effect of Y-grape juice on cyclooxygenase-2 (COX-2) activity in mouse ear treated with TPA was studied. Both topical and oral application of the Y-grape juice inhibited the TPA-induced increase in COX-2 activity. Caftaric acid, isolated and identified from the Y-grape juice, was antimutagenic toward DMBA and prevented TPA-induced inflammation in mice, suggesting caftaric acid participates in chemopreventive effect/activities of Y-grape juice.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Skin Neoplasms/prevention & control , Vitis/chemistry , 9,10-Dimethyl-1,2-benzanthracene/antagonists & inhibitors , Administration, Topical , Animals , Anti-Inflammatory Agents , Antimutagenic Agents , Antioxidants , Carcinogens , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/administration & dosage , Edema/chemically induced , Edema/drug therapy , Fruit/chemistry , Mice , Mice, Inbred SENCAR , Phenols/isolation & purification , Phenols/pharmacology , Phytotherapy , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Skin Neoplasms/chemically induced , Tetradecanoylphorbol Acetate/pharmacology
18.
Mutat Res ; 723(2): 182-9, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21601008

ABSTRACT

Our study demonstrated that the formation of DNA adducts in liver, lungs, colon and kidneys of mice given a carcinogenic heterocyclic amine, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), in the diet significantly decreased following the administration of the juice of Vitis coignetiae, purple berries from a vine tree. The juice of V. coignetiae significantly inhibited the clastogenicity and mutagenicity of heterocyclic amines in the micronucleus assay and the Ames test, and was an effective inhibitor of the activities of phase I enzymes (cytochrome P450 1A1 and cytochrome P450 1A2) and enhancer of the activities of phase II enzymes (uridine 5'-diphospho-glucuronosyltransferase and glutathione S-transferase). We investigated the purification and isolation of an active compound in the juice of V. coignetiae using antimutagenicity as a separation marker. Caftaric acid, a polyphenolic compound, was identified as a component responsible for antimutagenicity in the juice of V. coignetiae towards the carcinogenic heterocyclic amine 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). This is the first report of antimutagenicity of caftaric acid. Caftaric acid was reported as an inhibitor of the protein-protein interactions mediated by the Src-family kinases. The impact of the juice of V. coignetiae and its constituents on tumor initiation and promotion thus warrants further study.


Subject(s)
Antimutagenic Agents/pharmacology , Fruit , Phenols/pharmacology , Vitis/chemistry , Animals , DNA Adducts , Imidazoles/toxicity , Male , Mice , Mice, Inbred C57BL , Mutagens/toxicity , Quinoxalines/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...