Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 140(1-2): 45-50, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19103235

ABSTRACT

Sinorhizobium meliloti is a symbiotic soil bacterium of the alphaproteobacterial subdivision. Like other rhizobia, S. meliloti induces nitrogen-fixing root nodules on leguminous plants. This is an ecologically and economically important interaction, because plants engaged in symbiosis with rhizobia can grow without exogenous nitrogen fertilizers. The S. meliloti-Medicago truncatula (barrel medic) association is an important symbiosis model. The S. meliloti genome was published in 2001, and the M. truncatula genome currently is being sequenced. Many new resources and data have been made available since the original S. meliloti genome annotation and an update was needed. In June 2008, we submitted our annotation update to the EMBL and NCBI databases. Here we describe this new annotation and a new web-based portal RhizoGATE. About 1000 annotation updates were made; these included assigning functions to 313 putative proteins, assigning EC numbers to 431 proteins, and identifying 86 new putative genes. RhizoGATE incorporates the new annotion with the S. meliloti GenDB project, a platform that allows annotation updates in real time. Locations of transposon insertions, plasmid integrations, and array probe sequences are available in the GenDB project. RhizoGATE employs the EMMA platform for management and analysis of transcriptome data and the IGetDB data warehouse to integrate a variety of heterogeneous external data sources.


Subject(s)
Databases, Genetic , Genome, Bacterial , Information Management , Sinorhizobium meliloti/genetics , Bacterial Proteins/genetics , Information Storage and Retrieval , Internet , Medicago truncatula , Microarray Analysis , User-Computer Interface
2.
J Biotechnol ; 136(1-2): 11-21, 2008 Aug 31.
Article in English | MEDLINE | ID: mdl-18367281

ABSTRACT

Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.


Subject(s)
Bacterial Proteins/genetics , Chromosome Mapping/methods , Corynebacterium/genetics , Genome, Bacterial/genetics , Open Reading Frames/genetics , Sequence Analysis, DNA/methods , Base Sequence , Molecular Sequence Data
3.
Biosens Bioelectron ; 20(8): 1685-9, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15626629

ABSTRACT

The bondforces between biotinylated surfaces and streptavidin or avidin coated beads are investigated by a magnetic field based manipulation system for magnetic microbeads. The magnetic field is generated by currents through a set of conducting lines, and its gradient exerts a force onto the magnetic beads. The force can be increased until the bond between the bead and the surface breaks. Consistent with other groups we found two conformations for both investigated bonds. The measured bondforces for the two conformations are for Streptavidin-Biotin: 55.9 and 244.7 fN and for Avidin-Biotin: 15.9 and 58.4 fN. These very low bondforces (10-100 times smaller than earlier measurements) match to the extremely low loading rate of about 1 fN/s. This new technique thus allows to investigate biomolecular bonds by extremely low forces.


Subject(s)
Avidin/chemistry , Biotin/chemistry , Magnetics , Micromanipulation/methods , Streptavidin/chemistry , Avidin/analysis , Avidin/ultrastructure , Binding Sites , Biotin/analysis , Micromanipulation/instrumentation , Microspheres , Physical Stimulation/instrumentation , Physical Stimulation/methods , Protein Binding , Reproducibility of Results , Sensitivity and Specificity , Streptavidin/analysis , Streptavidin/ultrastructure , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...