Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790282

ABSTRACT

Platelet-rich fibrin, the coagulated plasma fraction of blood, is commonly used to support natural healing in clinical applications. The rat calvaria defect is a standardized model to study bone regeneration. It remains, however, unclear if the rat calvaria defect is appropriate to investigate the impact of human PRF (Platelet-Rich Fibrin) on bone regeneration. To this end, we soaked Bio-Gide® collagen membranes in human or rat liquid concentrated PRF before placing them onto 5 mm calvarial defects in Sprague Dawley rats. Three weeks later, histology and micro-computed tomography (µCT) were performed. We observed that the collagen membranes soaked with rat PRF show the characteristic features of new bone and areas of mineralized collagen matrix, indicated by a median mineralized volume of 1.5 mm3 (range: 0.9; 5.3 mm3). Histology revealed new bone growing underneath the membrane and hybrid bone where collagen fibers are embedded in the new bone. Moreover, areas of passive mineralization were observed. The collagen membranes soaked with human PRF, however, were devoid of histological features of new bone formation in the center of the defect; only occasionally, new bone formed at the defect margins. Human PRF (h-PRF) caused a median bone volume of 0.9 mm3 (range: 0.3-3.3 mm3), which was significantly lower than what was observed with rat PRF (r-PRF), with a BV median of 1.2 mm3 (range: 0.3-5.9 mm3). Our findings indicate that the rat calvaria defect model is suitable for assessing the effects of rat PRF on bone formation, but caution is warranted when extrapolating conclusions regarding the efficacy of human PRF.

2.
J Funct Biomater ; 15(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535247

ABSTRACT

Bio-Gide® is a collagen membrane routinely used in guided bone regeneration. Recent studies have shown that this collagen membrane has osteoconductive properties, meaning that it can support the growth of new bone. However, it has also been observed that the collagen membrane has areas of mineralized fibers which can occur spontaneously and independently of osteoblasts. To better understand how this works, we established a model using minced collagen membranes to reduce the active mineralization of intact collagen membranes in favor of passive mineralization. We thus compared the original intact membrane with a minced collagen membrane in a 5 mm calvarial defect model in Sprague Dawley rats. After three weeks of healing, histology and microcomputed tomography (µCT) were performed. Histological analysis confirmed the osteoconductive properties, with new bone growing inside the intact collagen membrane. However, in minced collagen membranes, the osteoconductive properties were restricted to the defect margins. Interestingly, histology revealed large mineralized areas indicating passive mineralization with no signs of bone formation. In the µCT analysis, the intact collagen membranes caused a higher median mineralized volume (1.5 mm3) compared with the minced group (0.4 mm3), but this lacked significance (p = 0.09). The µCT analysis needs to be interpreted carefully, particularly in defects filled with minced membranes, considering that the mineralized tissue may not necessarily be bone but also the result of passive mineralization. Taken together, the findings suggest that Bio-Gide® collagen membranes support bone formation while also exhibiting potential for passive mineralization.

3.
Clin Oral Implants Res ; 35(5): 467-486, 2024 May.
Article in English | MEDLINE | ID: mdl-38450852

ABSTRACT

OBJECTIVE: Pigs are emerging as a preferred experimental in vivo model for bone regeneration. The study objective was to answer the focused PEO question: in the pig model (P), what is the capacity of experimental alveolar bone defects (E) for spontaneous regeneration in terms of new bone formation (O)? METHODS: Following PRISMA guidelines, electronic databases were searched for studies reporting experimental bone defects or extraction socket healing in the maxillae or mandibles of pigs. The main inclusion criteria were the presence of a control group of untreated defects/sockets and the assessment of regeneration via 3D tomography [radiographic defect fill (RDF)] or 2D histomorphometry [new bone formation (NBF)]. Random effects meta-analyses were performed for the outcomes RDF and NBF. RESULTS: Overall, 45 studies were included reporting on alveolar bone defects or extraction sockets, most frequently in the mandibles of minipigs. Based on morphology, defects were broadly classified as 'box-defects' (BD) or 'cylinder-defects' (CD) with a wide range of healing times (10 days to 52 weeks). Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 50% RDF (36.87%-63.15%) and 43.74% NBF (30.47%-57%) in BD, and 44% RDF (16.48%-71.61%) and 39.67% NBF (31.53%-47.81%) in CD, which were similar to estimates of socket-healing [48.74% RDF (40.35%-57.13%) and 38.73% NBF (28.57%-48.89%)]. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION: A substantial body of literature revealed a high capacity for spontaneous regeneration in experimental alveolar bone defects of (mini)pigs, which should be considered in future studies of bone regeneration in this animal model.


Subject(s)
Alveolar Bone Loss , Bone Regeneration , Disease Models, Animal , Animals , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/pathology , Swine , Tooth Socket/pathology , Tooth Socket/diagnostic imaging , Wound Healing/physiology
4.
Stem Cell Res Ther ; 15(1): 33, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321490

ABSTRACT

BACKGROUND: There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs derived from undifferentiated hMSC (Naïve-EVs) and hMSC during the early stage of osteogenesis (Osteo-EVs). A further aim was to assess the osteoinductive potential of Osteo-EVs for bone regeneration in rat calvarial defects. METHODS: EVs from both groups were isolated using size-exclusion chromatography and characterized by size distribution, morphology, flow cytometry analysis and proteome profiling. The effects of EVs (10 µg/ml) on the proliferation, migration, and osteogenic differentiation of cultured hMSC were evaluated. Osteo-EVs (50 µg) or serum-free medium (SFM, control) were combined with collagen membrane scaffold (MEM) to repair critical-sized calvarial bone defects in male Lewis rats and the efficacy was assessed using µCT, histology and histomorphometry. RESULTS: Although Osteo- and Naïve-EVs have similar characteristics, proteomic analysis revealed an enrichment of bone-related proteins in Osteo-EVs. Both groups enhance cultured hMSC proliferation and migration, but Osteo-EVs demonstrate greater efficacy in promoting in vitro osteogenic differentiation, as evidenced by increased expression of osteogenesis-related genes, and higher calcium deposition. In rat calvarial defects, MEM with Osteo-EVs led to greater and more consistent bone regeneration than MEM loaded with SFM. CONCLUSIONS: This study discloses differences in the protein profile and functional effects of EVs obtained from naïve hMSC and hMSC during the early stage of osteogenesis, using different methods. The significant protein profile and cellular function of EVs derived from hMSC during the early stage of osteogenesis were further verified by a calvarial bone defect model, emphasizing the importance of using differentiated MSC to produce EVs for bone therapeutics.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Rats , Male , Animals , Osteogenesis/genetics , Proteomics , Mesenchymal Stem Cells/metabolism , Rats, Inbred Lew , Bone Regeneration/physiology , Cell Differentiation , Extracellular Vesicles/metabolism
5.
Acta Biomater ; 176: 417-431, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38272200

ABSTRACT

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), ß-tricalcium phosphate (ß-TCP) and two biphasic composites of HA/ß-TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for ß-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaP-based bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. STATEMENT OF SIGNIFICANCE: The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to ß-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important.


Subject(s)
Calcium Phosphates , Osteogenesis , Animals , Humans , Mice , Mice, Nude , Calcium Phosphates/pharmacology , Biocompatible Materials/pharmacology , Durapatite/pharmacology , Hydroxyapatites/pharmacology , Ceramics
6.
Clin Oral Implants Res ; 35(2): 141-154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964421

ABSTRACT

OBJECTIVES: Secretomes of mesenchymal stromal cells (MSC) represent a novel strategy for growth-factor delivery for tissue regeneration. The objective of this study was to compare the efficacy of adjunctive use of conditioned media of bone-marrow MSC (MSC-CM) with collagen barrier membranes vs. adjunctive use of conditioned media of leukocyte- and platelet-rich fibrin (PRF-CM), a current growth-factor therapy, for guided bone regeneration (GBR). METHODS: MSC-CM and PRF-CM prepared from healthy human donors were subjected to proteomic analysis using mass spectrometry and multiplex immunoassay. Collagen membranes functionalized with MSC-CM or PRF-CM were applied on critical-size rat calvaria defects and new bone formation was assessed via three-dimensional (3D) micro-CT analysis of total defect volume (2 and 4 weeks) and 2D histomorphometric analysis of central defect regions (4 weeks). RESULTS: While both MSC-CM and PRF-CM revealed several bone-related proteins, differentially expressed proteins, especially extracellular matrix components, were increased in MSC-CM. In rat calvaria defects, micro-CT revealed greater total bone coverage in the MSC-CM group after 2 and 4 weeks. Histologically, both groups showed a combination of regular new bone and 'hybrid' new bone, which was formed within the membrane compartment and characterized by incorporation of mineralized collagen fibers. Histomorphometry in central defect sections revealed greater hybrid bone area in the MSC-CM group, while the total new bone area was similar between groups. CONCLUSION: Based on the in vitro and in vivo investigations herein, functionalization of membranes with MSC-CM represents a promising strategy to enhance GBR.


Subject(s)
Mesenchymal Stem Cells , Platelet-Rich Fibrin , Rats , Humans , Animals , Culture Media, Conditioned/metabolism , Proteomics , Secretome , Bone Regeneration , Intercellular Signaling Peptides and Proteins/metabolism , Collagen/metabolism , Skull/surgery , Skull/pathology , Leukocytes/metabolism
7.
Clin Oral Implants Res ; 34(12): 1417-1427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792417

ABSTRACT

OBJECTIVES: Autologous bone is considered the gold standard for grafting, yet it suffers from a tendency to undergo resorption over time. While the exact mechanisms of this resorption remain elusive, osteocytes have been shown to play an important role in stimulating osteoclastic activity through their expression of receptor activator of NF-κB (RANK) ligand (RANKL). The aim of this study was to assess the function of osteocyte-derived RANKL in bone graft remodeling. MATERIALS AND METHODS: In Tnfsf11fl/fl ;Dmp1-Cre mice without osteocyte-specific RANKL as well as in Dmp1-Cre control mice, 2.6 mm calvarial bone disks were harvested and transplanted into mice with matching genetic backgrounds either subcutaneously or subperiosteally, creating 4 groups in total. Histology and micro-computed tomography of the grafts and the donor regions were performed 28 days after grafting. RESULTS: Histology revealed marked resorption of subcutaneous control Dmp1-Cre grafts and new bone formation around subperiosteal Dmp1-Cre grafts. In contrast, Tnfsf11fl/fl ;Dmp1-Cre grafts showed effectively neither signs of bone resorption nor formation. Quantitative micro-computed tomography revealed a significant difference in residual graft area between subcutaneous and subperiosteal Dmp1-Cre grafts (p < .01). This difference was not observed between subcutaneous and subperiosteal Tnfsf11fl/fl ;Dmp1-Cre grafts (p = .17). Residual graft volume (p = .08) and thickness (p = .13) did not differ significantly among the groups. Donor area regeneration was comparable between Tnfsf11fl/fl ;Dmp1-Cre and Dmp1-Cre mice and restricted to the defect margins. CONCLUSIONS: The results suggest an active function of osteocyte-derived RANKL in bone graft remodeling.


Subject(s)
Bone Remodeling , Bone Resorption , RANK Ligand , Animals , Mice , Bone Density Conservation Agents , Bone Remodeling/physiology , Bone Resorption/pathology , Osteocytes/metabolism , Osteocytes/pathology , X-Ray Microtomography , RANK Ligand/metabolism , RANK Ligand/pharmacology
8.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: mdl-36899904

ABSTRACT

Functionalizing biomaterials with conditioned media (CM) from mesenchymal stromal cells (MSC) is a promising strategy for enhancing the outcomes of guided bone regeneration (GBR). This study aimed to evaluate the bone regenerative potential of collagen membranes (MEM) functionalized with CM from human bone marrow MSC (MEM-CM) in critical size rat calvarial defects. MEM-CM prepared via soaking (CM-SOAK) or soaking followed by lyophilization (CM-LYO) were applied to critical size rat calvarial defects. Control treatments included native MEM, MEM with rat MSC (CEL) and no treatment. New bone formation was analyzed via micro-CT (2 and 4 weeks) and histology (4 weeks). Greater radiographic new bone formation occurred at 2 weeks in the CM-LYO group vs. all other groups. After 4 weeks, only the CM-LYO group was superior to the untreated control group, whereas the CM-SOAK, CEL and native MEM groups were similar. Histologically, the regenerated tissues showed a combination of regular new bone and hybrid new bone, which formed within the membrane compartment and was characterized by the incorporation of mineralized MEM fibers. Areas of new bone formation and MEM mineralization were greatest in the CM-LYO group. Proteomic analysis of lyophilized CM revealed the enrichment of several proteins and biological processes related to bone formation. In summary, lyophilized MEM-CM enhanced new bone formation in rat calvarial defects, thus representing a novel 'off-the-shelf' strategy for GBR.


Subject(s)
Mesenchymal Stem Cells , Proteomics , Rats , Humans , Animals , Rats, Wistar , Culture Media, Conditioned/metabolism , Skull/pathology , Bone Regeneration , Collagen/metabolism , Mesenchymal Stem Cells/metabolism
9.
Materials (Basel) ; 16(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902964

ABSTRACT

A static magnetic field generated by neodymium-iron-boron (NdFeB) magnets placed in the inner cavity of dental implants can enhance bone regeneration in rabbits. It is, however, unknown whether static magnetic fields support osseointegration in a canine model. We therefore determined the potential osteogenic effect of implants carrying NdFeB magnets inserted in the tibia of six adult canines in the early stages of osseointegration. Here, we report that after 15 days of healing, magnetic and regular implants showed a high variation with a median new bone-to-implant contact (nBIC) in the cortical (41.3% and 7.3%) and the medullary (28.6% and 44.8%) region, respectively. Consistently, the median new bone volume/tissue volume (nBV/TV) in the cortical (14.9% and 5.4%) and the medullary (22.2% and 22.4%) region were not significantly different. One week of healing only resulted in negligible bone formation. These findings suggest that considering the large variation and the pilot nature of this study, magnetic implants failed to support peri-implant bone formation in a canine model.

10.
Molecules ; 27(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35684547

ABSTRACT

(1) Background: Inhibition of osteoclast differentiation is the key approach in treating osteoporosis. However, using state-of-the-art treatments such as bisphosphonates and estrogen-based therapy is usually accompanied by many side effects. As opposed to this, the use of natural products as an osteoporotic remedy delivers promising outcomes with minimal side effects. (2) Methods: In the present study, we implemented a biochemometric workflow comprising (i) chemometric approaches using NMR and mass spectrometry and (ii) cell biological approaches using an osteoclast cytochemical marker (TRAP). The workflow serves as a screening tool to pursue potential in vitro osteoclast inhibitors. (3) Results: The workflow allowed for the selective isolation of two phenylpropanoids (coniferyl alcohol and sinapyl alcohol) from the fruits of neem tree (Azadirachta indica). These two isolated phenylpropanoids showed a very promising dose-dependent inhibition of osteoclast differentiation with negligible effects in terms of cell viability. (4) Conclusion: The presented workflow is an effective tool in the discovery of potential candidates for osteoclast inhibition from complex extracts. The used biochemometric approach saves time, effort and costs while delivering precise hints to selectively isolate bioactive constituents.


Subject(s)
Azadirachta , Azadirachta/chemistry , Fruit , Osteoclasts , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
11.
Front Bioeng Biotechnol ; 9: 783468, 2021.
Article in English | MEDLINE | ID: mdl-34917602

ABSTRACT

Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4-8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.

12.
Stem Cell Res Ther ; 12(1): 575, 2021 11 14.
Article in English | MEDLINE | ID: mdl-34776000

ABSTRACT

BACKGROUND: Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration. METHODS: PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology. RESULTS: Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis. CONCLUSION: Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Regeneration , Cell Differentiation , Hydrogels , Mesenchymal Stem Cells/metabolism , Rats , Tissue Engineering/methods , Tissue Scaffolds
13.
Clin Oral Implants Res ; 32(8): 980-988, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34114694

ABSTRACT

OBJECTIVES: Chronic liver disease increases the risk for periodontal disease and osteoporotic fractures, but its impacts on bone regeneration remain unknown. Herein, we studied the impact of liver cirrhosis on peri-implant bone formation. MATERIAL AND METHODS: A total of 20 male Wistar rats were randomly divided into two groups: one with the common bile duct ligated (BDL) and the respective sham-treated control group (SHAM). After four weeks of disease induction, titanium mini-screws were inserted into the tibia. Successful induction of liver cirrhosis was confirmed by the presence of clinical symptoms. Another four weeks later, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contact (BIC) were determined by histomorphometric analysis. RESULTS: Peri-implant bone formation was not significantly different between the SHAM and BDL groups. In the cortical compartment, the median percentage of peri-implant new bone was 10.1% (95% CI of mean 4.0-35.7) and 22.5% (13.8-30.6) in the SHAM and BDL groups, respectively (p = .26). Consistently, the new bone in direct contact with the implant was 18.1% (0.4-37.8) and 23.3% (9.2-32.8) in SHAM and BDL groups, respectively (p = .38). When measuring the medullary compartment, the new bone area was 7.1% (4.8-10.4) and 10.4% (7.2-13.5) in the SHAM and BDL groups, respectively (p = .17). Medullary new bone in direct contact with the implant was 10.0% (1.2-50.4) and 20.6% (16.8-35.3) in SHAM and BDL groups, respectively, and thus comparable between the two groups (p = .46). CONCLUSIONS: Bile duct ligation has no significant impact on the early stages of peri-implant bone formation.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Dental Implants , Animals , Bile Ducts/surgery , Male , Osseointegration , Rats , Rats, Wistar , Titanium
14.
Biology (Basel) ; 10(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807565

ABSTRACT

Autogenous tooth roots are increasingly applied as a grafting material in alveolar bone augmentation. Since tooth roots undergo creeping substitution similar to bone grafts, it can be hypothesized that osteoclasts release the growth factors stored in the dentin thereby influencing bone formation. To test this hypothesis, collagen membranes were either soaked in acid dentin lysates (ADL) from extracted porcine teeth or serum-free medium followed by lyophilization. Thereafter, these membranes covered standardized 5-mm-diameter critical-size defects in calvarial bone on rats. After four weeks of healing, micro-computed tomography and histological analyses using undecalcified thin ground sections were performed. Micro-computed tomography of the inner 4.5 mm calvaria defects revealed a median bone defect coverage of 91% (CI: 87-95) in the ADL group and 94% (CI: 65-100) in the control group, without significant differences between the groups (intergroup p > 0.05). Furthermore, bone volume (BV) was similar between ADL group (5.7 mm3, CI: 3.4-7.1) and control group (5.7 mm3, CI: 2.9-9.7). Histomorphometry of the defect area confirmed these findings with bone area values amounting to 2.1 mm2 (CI: 1.2-2.6) in the ADL group and 2.0 mm2 (CI: 1.1-3.0) in the control group. Together, these data suggest that acid dentin lysate lyophilized onto collagen membranes failed to modulate the robust bone formation when placed onto calvarial defects.

16.
Sci Rep ; 10(1): 7068, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341459

ABSTRACT

Although autografts are considered to be the gold standard treatment for reconstruction of large bone defects resulting from trauma or diseases, donor site morbidity and limited availability restrict their use. Successful bone repair also depends on sufficient vascularization and to address this challenge, novel strategies focus on the development of vascularized biomaterial scaffolds. This pilot study aimed to investigate the feasibility of regenerating large bone defects in sheep using 3D-printed customized calcium phosphate scaffolds with or without surgical vascularization. Pre-operative computed tomography scans were performed to visualize the metatarsus and vasculature and to fabricate customized scaffolds and surgical guides by 3D printing. Critical-sized segmental defects created in the mid-diaphyseal region of the metatarsus were either left empty or treated with the 3D scaffold alone or in combination with an axial vascular pedicle. Bone regeneration was evaluated 1, 2 and 3 months post-implantation. After 3 months, the untreated defect remained non-bridged while the 3D scaffold guided bone regeneration. The presence of the vascular pedicle further enhanced bone formation. Histology confirmed bone growth inside the porous 3D scaffolds with or without vascular pedicle inclusion. Taken together, this pilot study demonstrated the feasibility of precised pre-surgical planning and reconstruction of large bone defects with 3D-printed personalized scaffolds.


Subject(s)
Calcium Phosphates/chemistry , Metatarsus/surgery , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Bone Regeneration/physiology , Pilot Projects , Printing, Three-Dimensional , Sheep
17.
Article in English | MEDLINE | ID: mdl-32117940

ABSTRACT

The healing of bone fractures is a well-orchestrated physiological process involving multiple cell types and signaling molecules interacting at the fracture site to replace and repair bone tissue without scar formation. However, when the lesion is too large, normal healing is compromised. These so-called non-union bone fractures, mostly arising due to trauma, tumor resection or disease, represent a major therapeutic challenge for orthopedic and reconstructive surgeons. In this review, we firstly present the current commonly employed surgical strategies comprising auto-, allo-, and xenograft transplantations, as well as synthetic biomaterials. Further to this, we discuss the multiple factors influencing the effectiveness of the reconstructive therapy. One essential parameter is adequate vascularization that ensures the vitality of the bone grafts thereby supporting the regeneration process, however deficient vascularization presents a frequently encountered problem in current management strategies. To address this challenge, vascularized bone grafts, including free or pedicled fibula flaps, or in situ approaches using the Masquelet induced membrane, or the patient's body as a bioreactor, comprise feasible alternatives. Finally, we highlight future directions and novel strategies such as 3D printing and bioprinting which could overcome some of the current challenges in the field of bone defect reconstruction, with the benefit of fabricating personalized and vascularized scaffolds.

18.
Biomater Sci ; 8(6): 1683-1694, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-31984995

ABSTRACT

A major challenge in orthopedics is the repair of large non-union bone fractures. A promising therapy for this indication is the use of biodegradable bioinspired biomaterials that stabilize the fracture site, relieve pain and initiate bone formation and healing. This study uses a multidisciplinary evaluation strategy to assess immunogenicity, allergenicity, bone responses and physicochemical properties of a novel biomaterial scaffold. Two-photon stereolithography generated personalized custom-built scaffolds with a repeating 3D structure of Schwarz Primitive minimal surface unit cell with a specific pore size of ∼400 µm from three different methacrylated poly(d,l-lactide-co-ε-caprolactone) copolymers with lactide to caprolactone monomer ratios of 16 : 4, 18 : 2 and 9 : 1. Using in vitro and in vivo assays for bone responses, immunological reactions and degradation dynamics, we found that copolymer composition influenced the scaffold physicochemical and biological properties. The scaffolds with the fastest degradation rate correlated with adverse cellular effects and mechanical stiffness correlated with in vitro osteoblast mineralization. The physicochemical properties also correlated with in vivo bone healing and immune responses. Overall these observations provide compelling support for these scaffolds for bone repair and illustrate the effectiveness of a promising multidisciplinary strategy with great potential for the preclinical evaluation of biomaterials.


Subject(s)
Biomimetic Materials/pharmacology , Fractures, Ununited/drug therapy , Osteogenesis/drug effects , Tissue Scaffolds/chemistry , Wound Healing/drug effects , Animals , Biomimetic Materials/chemistry , Caproates/chemistry , Cells, Cultured , Dioxanes/chemistry , Disease Models, Animal , Female , Lactones/chemistry , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Primary Cell Culture , Stereolithography , Tissue Engineering
19.
J Vis Exp ; (141)2018 11 16.
Article in English | MEDLINE | ID: mdl-30507919

ABSTRACT

Large non-union bone fractures are a significant challenge in orthopedic surgery. Although auto- and allogeneic bone grafts are excellent for healing such lesions, there are potential complications with their use. Thus, material scientists are developing synthetic, biocompatible biomaterials to overcome these problems. In this study, we present a multidisciplinary platform for evaluating biomaterials for bone repair. We combined expertise from bone biology and immunology to develop a platform including in vitro osteoclast (OC) and osteoblast (OB) assays and in vivo mouse models of bone repair, immunogenicity, and allergenicity. We demonstrate how to perform the experiments, summarize the results, and report on biomaterial biocompatibility. In particular, we tested OB viability, differentiation, and mineralization and OC viability and differentiation in the context of ß-tricalcium phosphate (ß-TCP) disks. We also tested a ß-TCP/Collagen (ß-TCP/C) foam which is a commercially available material used clinically for bone repair in a critical-sized calvarial bone defect mouse model to determine the effects on the early phase of bone healing. In parallel experiments, we evaluated immune and allergic responses in mice. Our approach generates a biological compatibility profile of a bone biomaterial with a range of parameters necessary for predicting the biocompatibility of biomaterials used for bone healing and repair in patients.


Subject(s)
Biocompatible Materials/administration & dosage , Bone Regeneration/drug effects , Materials Testing/methods , Animals , Biocompatible Materials/pharmacokinetics , Bone Regeneration/physiology , Calcium Phosphates/administration & dosage , Calcium Phosphates/pharmacokinetics , Cell Differentiation/drug effects , Cell Differentiation/physiology , Collagen/administration & dosage , Collagen/pharmacokinetics , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/physiology , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...