Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Article in English | MEDLINE | ID: mdl-38710591

ABSTRACT

OBJECTIVE: Among 3614 youth who were 9 to 12 years old and initially did not have overweight or obesity (12% [n = 385] developed overweight or obesity), we examined the natural progression of weight gain and brain structure development during a 2-year period with a high risk for obesity (e.g., pre- and early adolescence) to determine the following: 1) whether variation in maturational trajectories of the brain regions contributes to weight gain; and/or 2) whether weight gain contributes to altered brain development. METHODS: Data were gathered from the Adolescent Brain Cognitive Development (ABCD) Study. Linear mixed-effects regression models controlled for puberty, caregiver education, handedness, and intracranial volume (random effects: magnetic resonance scanner [MRI] scanner and participant). Because pubertal development occurs earlier in girls, analyses were stratified by sex. RESULTS: For girls, but not boys, independent of puberty, greater increases in BMI were driven by smaller volumes over time in the bilateral accumbens, amygdala, hippocampus, and thalamus, right caudate and ventral diencephalon, and left pallidum (all p < 0.05). CONCLUSIONS: The results suggest a potential phenotype for identifying obesity risk because underlying differences among regions involved in food intake were related to greater weight gain in girls, but not in boys. Importantly, 2 years of weight gain may not be sufficient to alter brain development, highlighting early puberty as a critical time to prevent negative neurological outcomes.

2.
Acta Neuropsychiatr ; 36(2): 87-96, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36700449

ABSTRACT

The current small study utilised prospective data collection of patterns of prenatal alcohol and tobacco exposure (PAE and PTE) to examine associations with structural brain outcomes in 6-year-olds and served as a pilot to determine the value of prospective data describing community-level patterns of PAE and PTE in a non-clinical sample of children. Participants from the Safe Passage Study in pregnancy were approached when their child was ∼6 years old and completed structural brain magnetic resonance imaging to examine with archived PAE and PTE data (n = 51 children-mother dyads). Linear regression was used to conduct whole-brain structural analyses, with false-discovery rate (FDR) correction, to examine: (a) main effects of PAE, PTE and their interaction; and (b) predictive potential of data that reflect patterns of PAE and PTE (e.g. quantity, frequency and timing (QFT)). Associations between PAE, PTE and their interaction with brain structural measures demonstrated unique profiles of cortical and subcortical alterations that were distinct between PAE only, PTE only and their interactive effects. Analyses examining associations between patterns of PAE and PTE (e.g. QFT) were able to significantly detect brain alterations (that survived FDR correction) in this small non-clinical sample of children. These findings support the hypothesis that considering QFT and co-exposures is important for identifying brain alterations following PAE and/or PTE in a small group of young children. Current results demonstrate that teratogenic outcomes on brain structure differ as a function PAE, PTE or their co-exposures, as well as the pattern (QFT) or exposure.


Subject(s)
Prenatal Exposure Delayed Effects , Child , Pregnancy , Female , Humans , Child, Preschool , Pilot Projects , South Africa , Brain/pathology , Magnetic Resonance Imaging
3.
Appetite ; 192: 107081, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37839556

ABSTRACT

During adolescence, processes that control food intake (executive functions [EF]) undergo extensive refinement; underlying differences in EF may explain the inability to resist overeating unhealthy foods. Yet, overeating fat and sugar also causes changes to EF and cognition but disentangling these relationships has been difficult, as previous studies included youth with obesity. Here, amongst youth initially of a healthy weight, we evaluate whether 1) sex-specific underlying variation in EF/cognition at 9/10-years-old predict fat/sugar two-years later (Y2) and 2) if these relationships are moderated by body mass index (BMI), using linear mixed effects models (controlled for puberty, caregiver education; random effect: study site). Data were leveraged from Adolescent Brain Cognitive Development Study (n = 2987; 50.4% male; 15.4% Latino/a/x; 100% healthy weight at baseline; 12.4% overweight/obese by Y2, data release 4.0). EF and cognition (e.g., inhibition, cognition, motor, memory, impulsivity) were assessed with the NIH toolbox, Rey Auditory Verbal Learning Task, Little Man Task, the BIS/BAS, and UPPS-P. A saturated fat/added sugar (kcals) composite score was extracted from the validated Kids Food Block Screener. For males, greater baseline impulsivity (e.g., Positive Urgency, Lack of Planning and Perseverance) and reward (e.g., Fun seeking, Drive) was related to greater Y2 intake. For both sexes, greater baseline Negative Urgency and higher BMI was related to greater Y2 intake. No other relationships were observed. Our findings highlight a phenotype that may be more at risk for weight gain due to overconsumption of fat/sugar. Thus, prevention efforts may wish to focus on impulsive tendencies for these foods.


Subject(s)
Executive Function , Obesity , Female , Humans , Male , Adolescent , Child , Obesity/psychology , Impulsive Behavior , Hyperphagia , Sugars
4.
Obesity (Silver Spring) ; 31(11): 2809-2821, 2023 11.
Article in English | MEDLINE | ID: mdl-37731207

ABSTRACT

OBJECTIVE: The study aim was to determine whether (A) differences in executive function (EF) and cognition precede weight gain or (B) weight gain causes changes to EF and cognition. METHODS: Data were gathered from the Adolescent Brain Cognitive Development (ABCD) Study (release 4.0; ages 9-12 years old [N = 2794]; 100% had healthy weight at baseline [i.e., 9/10 years old], 12.4% had unhealthy weight by ages 11/12 years). EF and cognition were assessed across several domains (e.g., impulsivity, inhibitory control, processing speed, memory); BMI was calculated from height and weight. Nested random-effects mixed models examined (A) BMI ~ EF × Time (i.e., variation in EF/cognition precedes weight gain) and (B) EF ~ BMI × Time (weight gain causes changes to EF/cognition) and controlled for sex, puberty, and caregiver education; random effects were site and subject. RESULTS: Variation in impulsivity, memory, learning, and processing speed was associated with greater increases in BMI trajectories from 9 to 12 years old. Weight gain was associated with a decrease in inhibitory control, but no other associations were observed. CONCLUSIONS: Underlying variation in EF and cognition may be important for weight gain, but 2 years of weight gain may not be enough to have clinical implications for EF and cognition beyond inhibitory control. These findings suggest that more attention should be paid to the inclusion of EF programs in obesity prevention efforts.


Subject(s)
Cognition , Executive Function , Humans , Adolescent , Child , Body Mass Index , Obesity , Weight Gain
5.
Front Integr Neurosci ; 17: 1104788, 2023.
Article in English | MEDLINE | ID: mdl-37534335

ABSTRACT

Background: Alcohol and tobacco are known teratogens. Historically, more severe prenatal alcohol exposure (PAE) and prenatal tobacco exposure (PTE) have been examined as the principal predictor of neurodevelopmental alterations, with little incorporation of lower doses or ecological contextual factors that can also impact neurodevelopment, such as socioeconomic resources (SER) or adverse childhood experiences (ACEs). Here, a novel analytical approach informed by a socio-ecological perspective was used to examine the associations between SER, PAE and/or PTE, and ACEs, and their effects on neurodevelopment. Methods: N = 313 mother-child dyads were recruited from a prospective birth cohort with maternal report of PAE and PTE, and cross-sectional structural brain neuroimaging of child acquired via 3T scanner at ages 8-11 years. In utero SER was measured by maternal education, household income, and home utility availability. The child's ACEs were measured by self-report assisted by the researcher. PAE was grouped into early exposure (<12 weeks), continued exposure (>=12 weeks), and no exposure controls. PTE was grouped into exposed and non-exposed controls. Results: Greater access to SER during pregnancy was associated with fewer ACEs (maternal education: ß = -0.293,p = 0.01; phone access: ß = -0.968,p = 0.05). PTE partially mediated the association between SER and ACEs, where greater SER reduced the likelihood of PTE, which was positively associated with ACEs (ß = 1.110,p = 0.01). SER was associated with alterations in superior frontal (ß = -1336.036, q = 0.046), lateral orbitofrontal (ß = -513.865, q = 0.046), caudal anterior cingulate volumes (ß = -222.982, q = 0.046), with access to phone negatively associated with all three brain volumes. Access to water was positively associated with superior frontal volume (ß=1569.527, q = 0.013). PTE was associated with smaller volumes of lateral orbitofrontal (ß = -331.000, q = 0.033) and nucleus accumbens regions (ß = -34.800, q = 0.033). Conclusion: Research on neurodevelopment following community-levels of PAE and PTE should more regularly consider the ecological context to accelerate understanding of teratogenic outcomes. Further research is needed to replicate this novel conceptual approach with varying PAE and PTE patterns, to disentangle the interplay between dose, community-level and individual-level risk factors on neurodevelopment.

6.
JAMA Pediatr ; 177(10): 1102-1105, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37578771

ABSTRACT

This cohort study uses a natural experimental design to assess the impact of the COVID-19 lockdown on weight gain as associated with socioeconomic disadvantage in a diverse population of US youth.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Weight Gain , Socioeconomic Factors
7.
Health Psychol ; 42(12): 878-888, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36633989

ABSTRACT

OBJECTIVE: To determine how environmental factors are associated with physical health conditions in 9- to 10-year-old participants in the Adolescent Brain Cognitive Development (ABCD) Study, and how they are moderated by family-level socioeconomic status (SES). METHOD: We performed cross-sectional analyses of 8,429 youth participants in the ABCD Study, in which nine physical health conditions (having underweight or overweight/obesity, not participating in sports activities, short sleep duration, high sleep disturbances, lack of vigorous and strengthening-related physical activity, miscellaneous medical problems, and traumatic brain injury) were regressed on three environmental factors [neighborhood disadvantage (area deprivation index [ADI]), risk of lead exposure, and concentrations of particulate matter 2.5 (PM2.5)] and their interaction with family-level SES (i.e., parent-reported annual household income). Environmental data were geocoded to participants' primary residential addresses at 9- to 10-year-olds. RESULTS: Risk of lead exposure and ADI were positively associated with the odds of having overweight/obesity, not participating in sports activity, and short sleep durations. ADI was also positively associated with high sleep disturbances. PM2.5 was positively associated with the odds of having overweight/obesity and reduced vigorous physical activity. Family-level SES moderated relationships between ADI and both underweight and overweight/obesity, with high SES being associated with more pronounced changes given increased ADI. CONCLUSIONS: Policymakers and public health officials must implement policies and remediation strategies to ensure children are free from exposure to neurotoxicant and environmental factors. Physical health conditions may be less of a product of an individual's choices and more related to environmental influences. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Overweight , Thinness , Child , Adolescent , Humans , Socioeconomic Factors , Cross-Sectional Studies , Lead , Obesity/epidemiology , Particulate Matter
8.
Health Psychol ; 42(12): 868-877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36469439

ABSTRACT

OBJECTIVE: We evaluated whether relationships between area deprivation (ADI), body mass index (BMI) and brain structure (e.g., cortical thickness, subcortical volume) during preadolescence supported the immunologic model of self-regulation failure (NI) and/or neuronal stress (NS) theories of overeating. The NI theory proposes that ADI causes structural alteration in the brain due to the neuroinflammatory effects of overeating unhealthy foods. The NS theory proposes that ADI-related stress negatively impacts brain structure, which causes stress-related overeating and subsequent obesity. METHOD: Data were gathered from the Adolescent Brain Cognitive Development Study (9 to 12 years old; n = 3,087, 51% male). Linear mixed-effects models identified brain regions that were associated with both ADI and BMI; longitudinal associations were evaluated with mediation models. The NI model included ADI and BMI at 9 to 10 years old and brain data at 11 to 12 years old. The NS model included ADI and brain data at 9 to 10 years old and BMI at 11 to 12 years old. RESULTS: BMI at 9 to 10 years old partially mediated the relationship between ADI and ventral diencephalon (DC) volume at 11 to 12 years old. Additionally, the ventral DC at 9 to 10 years old partially mediated the relationship between ADI and BMI at 11 to 12 years old, even in youth who at baseline, were of a healthy weight. Results were unchanged when controlling for differences in brain structure and weight across the 2-years. CONCLUSION: Greater area deprivation may indicate fewer access to resources that support healthy development, like nutritious food and nonstressful environments. Our findings provide evidence in support of the NI and NS theories of overeating, specifically, with greater ADI influencing health outcomes of obesity via brain structure alterations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Pediatric Obesity , Child , Adolescent , Male , Humans , Female , Pediatric Obesity/epidemiology , Neuroinflammatory Diseases , Body Mass Index , Brain , Hyperphagia
9.
Pediatr Obes ; 18(2): e12985, 2023 02.
Article in English | MEDLINE | ID: mdl-36253967

ABSTRACT

OBJECTIVE: Independent of weight status, rapid weight gain has been associated with underlying brain structure variation in regions associated with food intake and impulsivity among pre-adolescents. Yet, we lack clarity on how developmental maturation coincides with rapid weight gain and weight stability. METHODS: We identified brain predictors of 2-year rapid weight gain and its longitudinal effects on brain structure and impulsivity in the Adolescent Brain Cognitive DevelopmentSM Study®. Youth were categorized as Healthy Weight/Weight Stable (WSHW , n = 527) or Weight Gainers (WG, n = 221, >38lbs); 63% of the WG group were healthy weight at 9-to-10-years-old. RESULTS: A fivefold cross-validated logistic elastic-net regression revealed that rapid weight gain was associated with structural variation amongst 39 brain features at 9-to-10-years-old in regions involved with executive functioning, appetitive control and reward sensitivity. Two years later, WG youth showed differences in change over time in several of these regions and performed worse on measures of impulsivity. CONCLUSIONS: These findings suggest that brain structure in pre-adolescence may predispose some to rapid weight gain and that weight gain itself may alter maturational brain change in regions important for food intake and impulsivity. Behavioural interventions that target inhibitory control may improve trajectories of brain maturation and facilitate healthier behaviours.


Subject(s)
Brain , Weight Gain , Humans , Adolescent , Child , Causality
10.
Alcohol Clin Exp Res ; 46(11): 1980-1992, 2022 11.
Article in English | MEDLINE | ID: mdl-36117382

ABSTRACT

BACKGROUND: Neuroimaging studies have emphasized the impact of prenatal alcohol exposure (PAE) on brain development, traditionally in heavily exposed participants. However, less is known about how naturally occurring community patterns of PAE (including light to moderate exposure) affect brain development, particularly in consideration of commonly occurring concurrent impacts of prenatal tobacco exposure (PTE). METHODS: Three hundred thirty-two children (ages 8 to 12) living in South Africa's Cape Flats townships underwent structural magnetic resonance imaging. During pregnancy, their mothers reported alcohol and tobacco use, which was used to evaluate PAE and PTE effects on their children's brain structure. Analyses involved the main effects of PAE and PTE (and their interaction) and the effects of PAE and PTE quantity on cortical thickness, surface area, and volume. RESULTS: After false-discovery rate (FDR) correction, PAE was associated with thinner left parahippocampal cortices, while PTE was associated with smaller cortical surface area in the bilateral pericalcarine, left lateral orbitofrontal, right posterior cingulate, right rostral anterior cingulate, left caudal middle frontal, and right caudal anterior cingulate gyri. There were no PAE × PTE interactions nor any associations of PAE and PTE exposure on volumetrics that survived FDR correction. CONCLUSION: PAE was associated with reduction in the structure of the medial temporal lobe, a brain region critical for learning and memory. PTE had stronger and broader associations, including with regions associated with executive function, reward processing, and emotional regulation, potentially reflecting continued postnatal exposure to tobacco (i.e., second-hand smoke exposure). These differential effects are discussed with respect to reduced PAE quantity in our exposed group versus prior studies within this geographical location, the deep poverty in which participants live, and the consequences of apartheid and racially and economically driven payment practices that contributed to heavy drinking in the region. Longer-term follow-up is needed to determine potential environmental and other moderators of the brain findings here and assess the extent to which they endure over time.


Subject(s)
Nicotiana , Prenatal Exposure Delayed Effects , Child , Humans , Female , Pregnancy , Nicotiana/adverse effects , South Africa/epidemiology , Birth Cohort , Prenatal Exposure Delayed Effects/diagnostic imaging , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/pathology , Brain , Ethanol/pharmacology
11.
Health Place ; 77: 102885, 2022 09.
Article in English | MEDLINE | ID: mdl-35963164

ABSTRACT

Our study characterized associations between three indicators of COVID-19's community-level impact in 20 geographically diverse metropolitan regions and how worried youth and their caregivers in the Adolescent Brain Cognitive Development℠ Study have been about COVID-19. County-level COVID-19 case/death rates and monthly unemployment rates were geocoded to participants' addresses. Caregivers' (vs. youths') COVID-19-related worry was more strongly associated with COVID-19's community impact, independent of sociodemographics and pre-pandemic anxiety levels, with these associations varying by location. Public-health agencies and healthcare providers should avoid adopting uniform "one-size-fits-all" approaches to addressing COVID-19-related emotional distress and must consider specific communities' needs, challenges, and strengths.


Subject(s)
COVID-19 , Caregivers , Adolescent , Anxiety/epidemiology , Anxiety/psychology , COVID-19/epidemiology , Caregivers/psychology , Humans , Pandemics
12.
Front Public Health ; 10: 1061049, 2022.
Article in English | MEDLINE | ID: mdl-36589997

ABSTRACT

Background: Environmental resources are related to childhood obesity risk and altered brain development, but whether these relationships are stable or if they have sustained impact is unknown. Here, we utilized a multidimensional index of childhood neighborhood conditions to compare the influence of various social and environmental disparities (SED) on body mass index (BMI)-brain relationships over a 2-year period in early adolescence. Methods: Data were gathered the Adolescent Brain Cognitive Development Study® (n = 2,970, 49.8% female, 69.1% White, no siblings). Structure magnetic resonance imaging (sMRI), anthropometrics, and demographic information were collected at baseline (9/10-years-old) and the 2-year-follow-up (11/12-years-old). Region of interest (ROIs; 68 cortical, 18 subcortical) estimates of cortical thickness and subcortical volume were extracted from sMRI T1w images using the Desikan atlas. Residential addresses at baseline were used to obtain geocoded estimates of SEDs from 3 domains of childhood opportunity index (COI): healthy environment (COIHE), social/economic (COISE), and education (COIED). Nested, random-effects mixed models were conducted to evaluate relationships of BMI with (1) ROI * COI[domain] and (2) ROI * COI[domain] * Time. Models controlled for sex, race, ethnicity, puberty, and the other two COI domains of non-interest, allowing us to estimate the unique variance explained by each domain and its interaction with ROI and time. Results: Youth living in areas with lower COISE and COIED scores were heavier at the 2-year follow-up than baseline and exhibited greater thinning in the bilateral occipital cortex between visits. Lower COISE scores corresponded with larger volume of the bilateral caudate and greater BMI at the 2-year follow-up. COIHE scores showed the greatest associations (n = 20 ROIs) with brain-BMI relationships: youth living in areas with lower COIHE had thinner cortices in prefrontal regions and larger volumes of the left pallidum and Ventral DC. Time did not moderate the COIHE x ROI interaction for any brain region during the examined 2-year period. Findings were independent of family income (i.e., income-to-needs). Conclusion: Collectively our findings demonstrate that neighborhood SEDs for health-promoting resources play a particularly important role in moderating relationships between brain and BMI in early adolescence regardless of family-level financial resources.


Subject(s)
Pediatric Obesity , Humans , Child , Adolescent , Female , Male , Body Mass Index , Ethnicity , Brain , Income
13.
Environ Int ; 143: 105933, 2020 10.
Article in English | MEDLINE | ID: mdl-32659528

ABSTRACT

BACKGROUND: Emerging findings have increased concern that exposure to fine particulate matter air pollution (aerodynamic diameter ≤ 2.5 µm; PM2.5) may be neurotoxic, even at lower levels of exposure. Yet, additional studies are needed to determine if exposure to current PM2.5 levels may be linked to hemispheric and regional patterns of brain development in children across the United States. OBJECTIVES: We examined the cross-sectional associations between geocoded measures of concurrent annual average outdoor PM2.5 exposure, regional- and hemisphere-specific differences in brain morphometry and cognition in 10,343 9- and 10- year-old children. METHODS: High-resolution structural T1-weighted brain magnetic resonance imaging (MRI) and NIH Toolbox measures of cognition were collected from children at ages 9-10 years. FreeSurfer was used to quantify cortical surface area, cortical thickness, as well as subcortical and cerebellum volumes in each hemisphere. PM2.5 concentrations were estimated using an ensemble-based model approach and assigned to each child's primary residential address collected at the study visit. We used mixed-effects models to examine regional- and hemispheric- effects of PM2.5 exposure on brain estimates and cognition after considering nesting of participants by familial relationships and study site, adjustment for socio-demographic factors and multiple comparisons. RESULTS: Annual residential PM2.5 exposure (7.63 ± 1.57 µg/m3) was associated with hemispheric specific differences in gray matter across cortical regions of the frontal, parietal, temporal and occipital lobes as well as subcortical and cerebellum brain regions. There were hemispheric-specific associations between PM2.5 exposures and cortical surface area in 9/31 regions; cortical thickness in 22/27 regions; and volumes of the thalamus, pallidum, and nucleus accumbens. We found neither significant associations between PM2.5 and task performance on individual measures of neurocognition nor evidence that sex moderated the observed associations. DISCUSSION: Even at relatively low-levels, current PM2.5 exposure across the U.S. may be an important environmental factor influencing patterns of structural brain development in childhood. Prospective follow-up of this cohort will help determine how current levels of PM2.5 exposure may affect brain development and subsequent risk for cognitive and emotional problems across adolescence.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Brain , Child , Cross-Sectional Studies , Environmental Exposure/analysis , Humans , Particulate Matter/analysis , Prospective Studies , United States
14.
Front Hum Neurosci ; 14: 85, 2020.
Article in English | MEDLINE | ID: mdl-32322193

ABSTRACT

The positive relationship between socioeconomic status (SES) and cognitive performance is mediated, in part, by differences in brain structure in typically developing youth. Associations between brain regions that relate to SES overlap with brain regions known to be sensitive to prenatal alcohol exposure (PAE). Animal models demonstrate that PAE attenuates neural and cognitive benefits of early life enrichment. However, whether or not environmental factors related to SES are associated with brain development in youth affected by PAE remains unknown in humans. METHODS: T1-weighted magnetic resonance imaging (MRI) scans were obtained in participants with PAE and compared to age- and sex- matched Controls (n = 197, 48% with PAE, 44% girls, 6.5-17.7 years old). General linear modeling was utilized to examine associations between SES and subcortical brain volumes for youth with PAE compared to Controls. RESULTS: Group by SES interactions were observed within the hippocampus (HPC), nucleus accumbens (NAc) and ventral diencephalon (vDC) (corrected p values <0.05), where positive associations (e.g., higher SES related to larger subcortical volumes) were observed within Controls, but not youth with PAE. Post hoc analyses examined associations between SES and brain volumes within each group independently, and revealed widespread positive associations among Controls (Amyg, HPC, NAc, Pallidum, Putamen, vDC), but not youth with PAE. Across both groups, larger subcortical volumes were related to higher cognitive performance. CONCLUSION: Typically developing youth exhibit increased subcortical volumes with increased SES, and surprisingly, this relationship is absent in adolescents with PAE. Findings suggest that subcortical brain volumes are neurocognitively relevant in both groups. The present results expand our understanding of the impact of PAE on the developing human brain within varying environmental contexts, and may inform novel environmental interventions that aim to improve, in part, on-going disruptions in brain development among youth with PAE. Our study highlights novel complexities in the pursuit to understand SES-brain associations, as we provide evidence that SES matters for brain outcomes among typically developing youth, and possibly not as much on an already altered brain as a result of PAE.

15.
Nat Med ; 26(1): 91-97, 2020 01.
Article in English | MEDLINE | ID: mdl-31932788

ABSTRACT

Socioeconomic factors influence brain development and structure, but most studies have overlooked neurotoxic insults that impair development, such as lead exposure. Childhood lead exposure affects cognitive development at the lowest measurable concentrations, but little is known about its impact on brain development during childhood. We examined cross-sectional associations among brain structure, cognition, geocoded measures of the risk of lead exposure and sociodemographic characteristics in 9,712 9- and 10-year-old children. Here we show stronger negative associations of living in high-lead-risk census tracts in children from lower- versus higher-income families. With increasing risk of exposure, children from lower-income families exhibited lower cognitive test scores, smaller cortical volume and smaller cortical surface area. Reducing environmental insults associated with lead-exposure risk might confer greater benefit to children experiencing more environmental adversity, and further understanding of the factors associated with high lead-exposure risk will be critical for improving such outcomes in children.


Subject(s)
Brain/pathology , Environmental Exposure/analysis , Family , Income , Lead/adverse effects , Brain/diagnostic imaging , Child , Cognition , Cohort Studies , Female , Humans , Male , Risk Factors , United States
16.
Front Endocrinol (Lausanne) ; 11: 549928, 2020.
Article in English | MEDLINE | ID: mdl-33679599

ABSTRACT

Aim: To examine individual variability between perceived physical features and hormones of pubertal maturation in 9-10-year-old children as a function of sociodemographic characteristics. Methods: Cross-sectional metrics of puberty were utilized from the baseline assessment of the Adolescent Brain Cognitive Development (ABCD) Study-a multi-site sample of 9-10 year-olds (n = 11,875)-and included perceived physical features via the pubertal development scale (PDS) and child salivary hormone levels (dehydroepiandrosterone and testosterone in all, and estradiol in females). Multi-level models examined the relationships among sociodemographic measures, physical features, and hormone levels. A group factor analysis (GFA) was implemented to extract latent variables of pubertal maturation that integrated both measures of perceived physical features and hormone levels. Results: PDS summary scores indicated more males (70%) than females (31%) were prepubertal. Perceived physical features and hormone levels were significantly associated with child's weight status and income, such that more mature scores were observed among children that were overweight/obese or from households with low-income. Results from the GFA identified two latent factors that described individual differences in pubertal maturation among both females and males, with factor 1 driven by higher hormone levels, and factor 2 driven by perceived physical maturation. The correspondence between latent factor 1 scores (hormones) and latent factor 2 scores (perceived physical maturation) revealed synchronous and asynchronous relationships between hormones and concomitant physical features in this large young adolescent sample. Conclusions: Sociodemographic measures were associated with both objective hormone and self-report physical measures of pubertal maturation in a large, diverse sample of 9-10 year-olds. The latent variables of pubertal maturation described a complex interplay between perceived physical changes and hormone levels that hallmark sexual maturation, which future studies can examine in relation to trajectories of brain maturation, risk/resilience to substance use, and other mental health outcomes.


Subject(s)
Adolescent Development , Child Development , Gonadal Steroid Hormones/analysis , Puberty/physiology , Sexual Maturation , Adolescent , Child , Cross-Sectional Studies , Dehydroepiandrosterone/analysis , Estradiol/analysis , Female , Humans , Male , Self Report , Socioeconomic Factors , Testosterone/analysis
17.
Alcohol Clin Exp Res ; 42(9): 1769-1782, 2018 09.
Article in English | MEDLINE | ID: mdl-29935097

ABSTRACT

BACKGROUND: Since the 1970s, a range of facial, neurostructural, and neurocognitive adverse effects have been shown to be associated with prenatal alcohol exposure. Typically, these effects are studied individually and not in combination. Our objective is to improve the understanding of the teratogenic effects of prenatal alcohol exposure by simultaneously considering face-brain morphology and neurocognitive measures. METHODS: Participants were categorized as control (n = 47), fetal alcohol syndrome (FAS, n = 22), or heavily exposed (HE) prenatally, but not eligible for a FAS diagnosis (HE, n = 50). Structural brain MRI images and high-resolution 3D facial images were analyzed using dense surface models of features of the face and surface shape of the corpus callosum (CC) and caudate nucleus (CN). Asymmetry of the CN was evaluated for correlations with neurocognitive measures. RESULTS: (i) Facial growth delineations for FAS, HE, and controls are replicated for the CN and the CC. (ii) Concordance of clinical diagnosis and face-based control-FAS discrimination improves when the latter is combined with specific brain regions. In particular, midline facial regions discriminate better when combined with a midsagittal profile of the CC. (iii) A subset of HE individuals was identified with FAS-like CN dysmorphism. The average of this HE subset was FAS-like in its facial dysmorphism. (iv) Right-left asymmetry found in the CNs of controls is not apparent for FAS, is diminished for HE, and correlates with neurocognitive measures in the combined FAS and HE population. CONCLUSIONS: Shape analysis which combines facial regions with the CN, and with the CC, better identify those with FAS. CN asymmetry was reduced for FAS compared to controls and is strongly associated with general cognitive ability, verbal learning, and recall in those with prenatal alcohol exposure. This study further extends the brain-behavior relationships known to be vulnerable to alcohol teratogenesis.


Subject(s)
Alcohol Drinking/adverse effects , Brain/diagnostic imaging , Face/diagnostic imaging , Fetal Alcohol Spectrum Disorders/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adolescent , Alcohol Drinking/trends , Child , Female , Fetal Alcohol Spectrum Disorders/etiology , Humans , Pregnancy , Prenatal Exposure Delayed Effects/diagnostic imaging , Prenatal Exposure Delayed Effects/etiology
18.
Psychoneuroendocrinology ; 81: 70-79, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28419914

ABSTRACT

Emerging evidence in the field of adolescent neurodevelopment suggests that pubertal processes may contribute to known trajectories of brain maturation, and may contribute, in part, to sex differences in related cognitive, behavioral and mental health outcomes. The current longitudinal study examined how changes in physical pubertal maturation (measured by the Peterson Developmental Scale) predict changes in white matter microstructure in 18 boys and 15 girls over an approximate 2-year follow-up period, while accounting for age. Using Tract-Based Spatial Statistics and multi-level modeling, the results showed that physical pubertal changes predict patterns of changes in fractional anisotropy (FA) in white matter regions in the thalamus, precentral gyrus, superior corona radiata, corpus callosum (genu), superior corona radiata, and superior frontal gyrus. Sex specific changes were also seen, as changes in gonadal and adrenal development related to increases in FA in the superior frontal gyrus and precentral gyrus in boys, but gonadal development related to decreases in FA in the anterior corona radiata in girls. These findings are the first to show how changes over time in pubertal development influence white matter development. In addition, they support a larger body of emerging research suggesting that pubertal processes contribute to distinct changes in boys and girls across brain development.


Subject(s)
Brain/growth & development , Puberty/physiology , Sexual Maturation/physiology , White Matter/growth & development , Adolescent , Anisotropy , Brain/anatomy & histology , Diffusion Tensor Imaging , Female , Humans , Longitudinal Studies , Male , Sex Characteristics , White Matter/anatomy & histology
19.
Nat Neurosci ; 18(5): 773-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25821911

ABSTRACT

Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. We investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1,099 typically developing individuals between 3 and 20 years of age. Income was logarithmically associated with brain surface area. Among children from lower income families, small differences in income were associated with relatively large differences in surface area, whereas, among children from higher income families, similar income increments were associated with smaller differences in surface area. These relationships were most prominent in regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences in certain neurocognitive abilities. These data imply that income relates most strongly to brain structure among the most disadvantaged children.


Subject(s)
Brain/anatomy & histology , Educational Status , Income , Parents/education , Psychology, Adolescent , Psychology, Child , Adolescent , Age Factors , Anthropometry , Brain/growth & development , Cerebral Cortex/anatomy & histology , Cerebral Cortex/growth & development , Child , Child, Preschool , DNA/genetics , Genotype , Hippocampus/anatomy & histology , Hippocampus/growth & development , Humans , Models, Neurological , Organ Size , Poverty , Psychological Tests , Regression Analysis , Socioeconomic Factors , Young Adult
20.
Dev Cogn Neurosci ; 16: 155-165, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25743199

ABSTRACT

Small and detrimental, albeit inconsistent, effects of prenatal cocaine exposure (PCE) during early childhood have been reported. The teratogenic effects of prenatal alcohol (PAE) and tobacco exposure (PTE) on neurobehavior are more firmly established than PCE. We tested if co-exposure to all three drugs could be related to greater differences in brain structure than exposure to cocaine alone. Participants (n=42, PCE=27; age range=14-16 years) received an executive function battery prior to a T1-weighted 3T structural MRI scan. Cortical thickness was measured using FreeSurfer (v5.1). Fetal drug exposure was quantified through maternal self-reports usage during pregnancy. Using general linear modeling, we found no main effects of PCE on cortical thickness, but significant main effects of PAE and PTE in superior and medial frontal regions, after co-varying for the effects of age, sex, and each drug of exposure. Significant alcohol-by-tobacco interactions, and significant cocaine-by-alcohol interactions on cortical thickness in medial parietal and temporal regions were also observed. Poly-drug exposure and cognitive function also showed significant interactions with cortical thickness: lower cortical thickness was associated with better performance in PCE-exposed adolescents. Results suggest that although children with PCE have subtle but persistent brain cortical differences until mid-to-late adolescence.


Subject(s)
Cerebral Cortex/pathology , Cocaine/adverse effects , Ethanol/adverse effects , Executive Function/drug effects , Nicotiana/adverse effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/psychology , Adolescent , Adult , Age Factors , Cerebral Cortex/drug effects , Dose-Response Relationship, Drug , Female , Humans , Linear Models , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Pregnancy , Sex Factors , Social Class
SELECTION OF CITATIONS
SEARCH DETAIL
...