Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Mol Graph Model ; 130: 108784, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38692127

ABSTRACT

Deep eutectic solvents (DESs) composed of choline chloride (ChCl) and ascorbic acid (AA) were investigated using the molecular dynamics (MD) simulations. The analyses of the configuration, radial distribution function (RDFs), coordination number, spatial distribution function (SDFs), interaction energies, hydrogen bond number, and self-diffusion coefficient of the ChCl/AA binary systems of different concentrations showed that the stability of the hydrogen bond network and the mutual attraction between systems were the strongest at the experimental eutectic concentration (molar ratio of 2:1). In our simulated temperature range from 303.15 to 353.15 K, the hydrogen bonding network of ChCl/AA DES does not undergo considerable alterations, indicating that its stability was insensitive to temperature. In addition, the influence of the water content on the ChCl/AA DES system was further investigated. The simulated results revealed that the water molecules could disrupt the formation of the hydrogen bonding network by occupyin positions that are essential for the formation of hydrogen bonds within the DES system.

2.
J Med Chem ; 65(22): 15123-15139, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36351049

ABSTRACT

To enhance the affinity of the human epidermal growth receptor 2 (HER2) targeted peptide developed previously, bispecific fusion peptides P1GCGT1 and P1GCGCGT1 were designed using an in silico approach. Molecular dynamic simulation showed that both peptides strongly interacted with HER2 domains II and IV. Compared with peptides targeting each single domain, P1GCGT1 and P1GCGCGT1 could bind to HER2 more significantly and targeted HER2-positive cells specifically. Additionally, both peptides were used to generate peptide-drug conjugates with camptothecin (CPT), among which I-1 and I-4 were screened for enhanced cellular activity and selectivity. Biological evaluation demonstrated that I-1 and I-4 induced cell apoptosis, promoted cell cycle arrestin S-phase, and inhibited Topo I activity. The binding affinity assay and confocal analysis revealed that I-1 and I-4 were effective at targeting HER2. Moreover, I-1 and I-4 showed better stability than single targeting peptide and presented enhanced antitumor activity and safety than CPT in tumor-bearing mice.


Subject(s)
Breast Neoplasms , Peptides , Receptor, ErbB-2 , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Line, Tumor , Mice, Nude , Peptides/pharmacology , Peptides/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism
3.
Electrophoresis ; 43(13-14): 1415-1422, 2022 07.
Article in English | MEDLINE | ID: mdl-35338718

ABSTRACT

The histidine-modified zeolitic imidazolate framework [His-ZIF-67] was prepared with the histidine, 2-methylimidazole, and Co2+ under ambient temperature. His-ZIF-67 was bonded via a glycidyl methacrylate copolymer to the internal surface of capillary and then functionalized with the NH2 -ß-cyclodextrin (NH2 -ß-CD). The materials were characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, X-ray diffraction, and X-ray photoelectron spectroscopy. In comparison with the NH2 -ß-CD@capillary, the NH2 -ß-CD@His-ZIF-67@capillary-coated column shows significantly enhanced resolution for chiral molecules. The NH2 -ß-CD@His-ZIF-67@capillary column achieved the baseline separation of amlodipine and metoprolol (the resolution of amlodipine: 1.70; metoprolol: 1.50) and the partial separation of atenolol and propranolol (the resolution of atenolol: 1.03; propranolol: 0.60). These were attributed to the histidine modification and the features of ZIF-67, including an excellent surface area and the abundant porosity. The pH and proportion of organic modifier in the buffer were crucial for enantioseparation performance and were evaluated in detail. The fabricated NH2 -ß-CD@His-ZIF-67@capillary-coated column showed good stability and repeatability (relative standard deviation <6.3%). The molecular modeling with AutoDock and grand canonical ensemble was carried out to evaluate the interactions between chiral stationary phase and racemic drugs.


Subject(s)
Capillary Electrochromatography , Cyclodextrins , Zeolites , Amlodipine/analysis , Atenolol , Capillary Electrochromatography/methods , Histidine , Metoprolol , Propranolol , Stereoisomerism
4.
Anal Chem ; 93(26): 9036-9040, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34161075

ABSTRACT

Circulating tumor cells (CTCs) play a pivotal role in the early diagnosis of pheochromocytoma (PCC). Herein, we fabricated a new dual-targeting nanoprobe for coinstantaneous identification of rare PCC-CTCs from peripheral blood via targeting the norepinephrine transporter (NET) and somatostatin receptor SSTR2 overexpressed on the surface of PCC cells. Meta-iodobenzylguanidine (MIBG) functionalized magnetic Fe3O4 and octreotide (DOTA) decorated signal amplification Ag@SiO2 nanosphere were used to capture and detect PCC-CTCs by binding to NET and SSTR2. The proposed dual-targeting sensor achieved good reproducibility and high sensitivity for the monitoring of PC12 in the concentration range from 5 to 5 × 104 cells mL-1, with detection limits of 2 cell/mL. This strategy opens a new approach for simple, sensitive, and rapid determination of PCC biomarkers, which shows great potential in early diagnosis, prognosis, and therapeutic evaluation of PCC.


Subject(s)
Adrenal Gland Neoplasms , Neoplastic Cells, Circulating , Pheochromocytoma , Early Diagnosis , Humans , Pheochromocytoma/diagnosis , Reproducibility of Results , Silicon Dioxide
5.
Nanoscale Res Lett ; 16(1): 11, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33438118

ABSTRACT

In this work, cobalt phosphide nanoparticles (Co2P NPs) were prepared by simple and mild hydrothermal method without the use of harmful phosphorous source. The morphological structure and surface component of Co2P were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy measurements. Considering the excellent electrocatalytic reduction activity and good electrical conductivity of transition-metal phosphide, we fabricated Co2P NPs on indium tin oxide (ITO) substrate (Co2P/ITO) for H2O2 detection. The Co2P/ITO transducer displayed a rapid amperometric response less than 5 s, a broader response range from 0.001 to 10.0 mM and a low detection limit of 0.65 µM. In addition, the non-enzymatic Co2P/ITO sensor showed outstanding selectivity, reproducibility, repeatability and stability, all of which qualified the Co2P/ITO electrode for quite a reliable and promising biosensor for H2O2 sensing.

6.
Mol Pharm ; 17(12): 4443-4462, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32926628

ABSTRACT

As a BCS IV drug, ursolic acid (UA) has low oral bioavailability mainly because of its poor aqueous solubility/dissolution, poor permeability, and metabolism by cytochrome P450 (CYP) isozymes, such as CYP3A4. Most UA preparations demonstrated a much higher dissolution than that of its crystalline form yet a low drug concentration in plasma due to their lower consideration or evaluation for the permeability and metabolism issues. In the current study, a supramolecular coamorphous system of UA with piperine (PIP) was prepared and characterized by powder X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. In comparison to crystalline UA and UA in physical mixture, such coamorphous system enhanced solubility (5.3-7-fold in the physiological solution) and dissolution (7-8-fold in the physiological solution within 2 h) of UA and exhibited excellent physical stability under 90-day storage conditions. More importantly, the pharmacokinetic study of coamorphous UA in rats exhibited 5.8-fold and 2.47-fold improvement in AUC0-∞ value, respectively, compared with its free and mixed crystalline counterparts. In order to further explore the mechanism of such improvement, the molecular interactions of a coamorphous system in the solid state were investigated. Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance spectroscopy, and density functional theory modeling suggested that intermolecular hydrogen bonds with strong interactions newly formed between UA and PIP after coamorphization. The in vitro permeability studies across Caco-2 cell monolayer and metabolism studies by rat hepatic microsomes indicated that free PIP significantly increased the permeability of UA and inhibited the enzymatic metabolism of UA by CYP3A4. However, PIP in the coamorphous combination exhibited a much lower level in the bioenhancing than its free form arising from the synchronized dissolution characteristic of the preparation (only 60% of PIP released in comparison to its free counterpart in 2 h). The in situ loop study in rats proposed that the acid-sensitive dissolution in the stomach of the coamorphous preparation helped to improve the effective free drug concentration, thereby facilitating PIP to play its role in bioenhancing. The current study offers an exploratory strategy to overcome poor solubility/dissolution, poor permeability, and metabolism by cytochrome P450 isozymes of the BCS IV drug to improve its oral bioavailability.


Subject(s)
Alkaloids/pharmacokinetics , Benzodioxoles/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A/metabolism , Piperidines/pharmacokinetics , Polyunsaturated Alkamides/pharmacokinetics , Triterpenes/pharmacokinetics , Administration, Oral , Alkaloids/administration & dosage , Alkaloids/chemistry , Animals , Benzodioxoles/administration & dosage , Benzodioxoles/chemistry , Biological Availability , Caco-2 Cells , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/chemistry , Drug Combinations , Drug Compounding/methods , Drug Liberation , Humans , Microsomes, Liver , Permeability , Piperidines/administration & dosage , Piperidines/chemistry , Polyunsaturated Alkamides/administration & dosage , Polyunsaturated Alkamides/chemistry , Rats , Solubility , Triterpenes/administration & dosage , Triterpenes/chemistry , Ursolic Acid
7.
Analyst ; 144(24): 7468-7477, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31710318

ABSTRACT

This study deals with the nonaqueous capillary electrophoretic enantioseparation of twenty-two amino alcohol drugs with a maltobionic acid (MA)-based ionic liquid (tetramethylammonium maltobionic acid, TMA-MA) as the novel chiral selector. In consideration of the poor solubility of MA in organic solvents, we managed to transform MA into ionic liquids (ILs) for the first time. Interestingly, this chiral selector exhibited powerful enantioselectivity towards the model analytes in company with boric acid. Systematical experiments were carried out to investigate the influence of concentration of TMA-MA, boric acid and tris (hydroxymethyl) aminomethane (Tris) as well as applied voltage on the enantioseparation. A great majority of enantiomers (except labetalol) were baseline separated under the optimized conditions and the effect of the molecular structure of amino alcohol drugs on the chiral separation was discussed. In addition, electrophoretic experiments, nuclear magnetic resonance (NMR), mass spectrometry (MS) and molecular modeling with the Gaussian program were employed to demonstrate the mechanism of chiral recognition. Based on the formation of an ionic liquid-boric acid-analyte complex, hydrogen binding was mainly responsible for enantioseparation.


Subject(s)
Amino Alcohols/isolation & purification , Disaccharides/chemistry , Ionic Liquids/chemistry , Quaternary Ammonium Compounds/chemistry , Amino Alcohols/chemistry , Boric Acids/chemistry , Disaccharides/chemical synthesis , Electrophoresis, Capillary/methods , Hydrogen Bonding , Ionic Liquids/chemical synthesis , Models, Molecular , Quaternary Ammonium Compounds/chemical synthesis , Stereoisomerism , Tromethamine/chemistry
8.
J Fluoresc ; 29(4): 819-825, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31321642

ABSTRACT

Herein, a simple and efficient fluorescence analysis method for L-Cysteine (L-Cys) was established. The method was based on the fluorescent "off-on" mode of nitrogen doped carbon dots (NCDs). The NCDs were prepared via a facile one-step solvothermal method. In the process of exploring the bio-functional application of these newly synthesized NCDs, we found these NCDs with rich functional groups exhibited excellent optical properties. In addition, these newly synthesized NCDs showed an excitation-dependent emissions photolumine-scent (PL) property and exhibited good performance in the detection of Fe3+ ions by quenching the blue emission fluorescence. Interestingly, the quenched fluorescence of NCDs was recovered with the addition of L-Cys, which provided a novel approach for L-Cys detection. The NCDs-based fluorescent "off-on" sensor has a wide linear detection range (0-100 µM), and a relatively low detection limits (0.35 µM) for L-Cys. This simple fluorescent "off-on" approach is, very sensitive and selective for L-Cys detection, which also provides a new insight on NCDs biosensor application.

9.
J Nanosci Nanotechnol ; 18(12): 8282-8288, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30189948

ABSTRACT

Cu2O nanocubes with different size (ranging from 20 nm to 400 nm) were prepared by a seed-mediated method to systematically explore the strong size-dependent properties in photocatalytic degradation of methyl orange (MO). Cu2O nanotubes were characterized by TEM, XRD, UV-Vis measurements. The size-dependent photocatalytic efficiency of the Cu2O nanocubes was evaluated by degradation of methyl orange (MO) in water under visible light (λ > 420 nm) irradiation. Furthermore, the photocurrent, linear sweep voltammetry (LSV) and electrochemical impedance spectra (EIS) measurements were applied to elucidate the size-dependent properties of Cu2O nanocubes, which demonstrated that smaller Cu2O nanocubes with certain length (30 nm) showed higher current density, faster electron transfer and lower rate of charge recombination in their exposed (100) facet. Therefore, 30 nm Cu2O nanocubes showed stronger visible light absorption capacity and higher photocatalytic activity in MO degradation among a series of nanocubes (20, 30, 100, 130, 200 and 400 nm) and their corresponding photocatalytic activities decreased with increasing the particles sizes.

10.
J Phys Chem B ; 121(17): 4319-4332, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28418670

ABSTRACT

Conformation of cellulose with various degree of polymerization of n = 1-12 in ionic liquid 1,3-dimethylimidazolium chloride ([C1mim]Cl) and the intermolecular interaction between them was studied by means of molecular dynamics (MD) simulations with fixed-charge and charge variable polarizable force fields, respectively. The integrated tempering enhanced sampling method was also employed in the simulations in order to improve the sampling efficiency. Cellulose undergoes significant conformational changes from a gaseous right-hand helical twist along the long axis to a flexible conformation in ionic liquid. The intermolecular interactions between cellulose and ionic liquid were studied by both infrared spectrum measurements and theoretical simulations. Designated by their puckering parameters, the pyranose rings of cellulose oligomers are mainly arranged in a chair conformation. With the increase in the degree of polymerization of cellulose, the boat and skew-boat conformations of cellulose appear in the MD simulations, especially in the simulations with polarization model. The number and population of hydrogen bonds between the cellulose and the chloride anions show that chloride anion is prone to form HBs whenever it approaches the hydroxyl groups of cellulose and, thus, each hydroxyl group is fully hydrogen bonded to the chloride anion. MD simulations with polarization model presented more abundant conformations than that with nonpolarization model. The application of the enhanced sampling method further enlarged the conformational spaces that could be visited by facilitating the system escaping from the local minima. It was found that the electrostatics interactions between the cellulose and ionic liquid contribute more to the total interaction energies than the van der Waals interactions. Although the interaction energy between the cellulose and anion is about 2.9 times that between the cellulose and cation, the role of cation is non-negligible. In contrast, the interaction energy between the cellulose and water is too weak to dissolve cellulose in water.


Subject(s)
Cellulose/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Molecular Dynamics Simulation
11.
J Phys Chem A ; 120(4): 490-502, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26756354

ABSTRACT

The interlocked ⟨rod | ring⟩ structures of pseudorotaxanes and [2]rotaxanes are usually maintained by the complex hydrogen-bonding (H-bonding) network between the rod and ring. Ab initio molecular dynamics (AIMD) using generalized energy-based fragmentation approach and polarizable force field (polar FF)-based molecular dynamics (MD) simulations were performed to investigate the conformational changes of mechanically interlocked systems and to obtain the ensemble-averaged NMR chemical shifts. Factor analysis (FA) demonstrates that the ring H-donor (2,6 pyridinedicarboxamide group) plays an important role in the ring-rod recognition. In comparison to the conventional fixed-charge force field, the polarization effect is crucial to account for the H-bonding interactions in supramolecular systems. In the hybrid scheme, the polar FF-based MD simulations are used to generate different initial states for the AIMD simulations, which are able to give better prediction of ensemble-averaged NMR signals for chemically equivalent amide protons. The magnitude of the deshielding shift of NMR signal is correlated with the length of hydrogen bond. The polar FF model with variable charges shows that the dipole-dipole interactions between the flexible diethylene glycol chain of ring and polar solvents induce the upfield shifts of NMR signals of rod H-donors and the directional distribution of the neighboring CH3CN solvents.

12.
J Phys Chem A ; 119(9): 1573-89, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25506668

ABSTRACT

Conformational changes of α,α-trehalose in a vacuum, water, and 0-20 wt % NaCl solutions were investigated by means of molecular dynamics (MD) simulations at different levels of density function theory (DFT) and with fixed-charge nonpolarizable and variable-charge force fields (FFs), respectively. The relative thermodynamic stability of trehalose is enhanced by the formation of intercycle and/or intracycle hydrogen bonds, but some thermodynamically unfavorable structures can be sampled in the DFT-based ab initio MD simulation. The polarization effects of polar trehalose molecule in aqueous and NaCl solutions were studied by a series of MD simulations with both the conventional nonpolarizable and polarizable force field models. In the polarizable model, the partial charges of trehalose were updated every 2 ps using DFT calculations and fused with the other FF parameters for the energy calculation and MD simulation. Around the trehalose, water molecules located in an asymmetry model and trehalose have a stronger tendency to bind with water molecules than Na(+) and Cl(-) ions. When the trehalose concentration is increased from 3.26 to 6.31 wt % in salt aqueous solution, the two trehalose molecules periodically approach each other in a nearly anhydrate state and leave a way to keep the favorable hydration structure with the mean trehalose-trehalose distance of 8.6 Å. The similarity between the solvated dimer packing styles (shoulder-by-shoulder or head-to-head) and crystal stacking can be used to make an extrapolation to higher sugar concentrations and to rationalize the bioprotection function of trehalose in high salt concentration.


Subject(s)
Molecular Dynamics Simulation , Sodium Chloride/chemistry , Trehalose/chemistry , Molecular Conformation , Solutions , Vacuum , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...