Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Signal ; 2(4): 248-260, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34988553

ABSTRACT

INTRODUCTION: Inflammation drives prostate cancer (PCa) progression. While inflammation is a cancer hallmark, the underlying mechanisms mediating inflammation-induced PCa are still under investigation. Interleukin-1 (IL-1) is an inflammatory cytokine that promotes cancer progression, including PCa metastasis and castration resistance. We previously found that acute IL-1 exposure represses PCa androgen receptor (AR) expression concomitant with the upregulation of pro-survival proteins, causing de novo accumulation of castration-resistant PCa cells. However, acute inflammation is primarily anti-tumorigenic, while chronic inflammation is pro-tumorigenic. Thus, using the LNCaP PCa cell line as model, we found that PCa cells can evolve insensitivity to chronic IL-1 exposure, restoring AR and AR activity and acquiring castration resistance. In this paper we expanded our chronic IL-1 model to include the MDA-PCa-2b PCa cell line to investigate the response to acute versus chronic IL-1 exposure and to compare the gene expression patterns that evolve in the LNCaP and MDA-PCa-2b cells chronically exposed to IL-1. METHODS: We chronically exposed MDA-PCa-2b cells to IL-1α or IL-1ß for several months to establish sublines. Once established, we determined subline sensitivity to exogenous IL-1 using cell viability assay, RT-qPCR and western blot. RNA sequencing was performed for parental and subline cells and over representation analysis (ORA) for geneset enrichment of biological process/pathway was performed. RESULTS: MDA-PCa-2b cells repress AR and AR activity in response to acute IL-1 exposure and evolve insensitivity to chronic IL-1 exposure. While cell biological and molecular response to acute IL-1 signaling is primarily conserved in LNCaP and MDA-PCa-2b cells, including upregulation of NF-κB signaling and downregulation of cell proliferation, the LNCaP and MDA-PCa-2b cells evolve conserved and unique molecular responses to chronic IL-1 signaling that may promote or support tumor progression. CONCLUSIONS: Our chronic IL-1 subline models can be used to identify underlying molecular mechanisms that mediate IL-1-induced PCa progression.

2.
Prostate ; 80(2): 133-145, 2020 02.
Article in English | MEDLINE | ID: mdl-31730277

ABSTRACT

BACKGROUND: The androgen receptor (AR) nuclear transcription factor is a therapeutic target for prostate cancer (PCa). Unfortunately, patients can develop resistance to AR-targeted therapies and progress to lethal disease, underscoring the importance of understanding the molecular mechanisms that underlie treatment resistance. Inflammation is implicated in PCa initiation and progression and we have previously reported that the inflammatory cytokine, interleukin-1 (IL-1), represses AR messenger RNA (mRNA) levels and activity in AR-positive (AR+ ) PCa cell lines concomitant with the upregulation of prosurvival biomolecules. Thus, we contend that IL-1 can select for AR-independent, treatment-resistant PCa cells. METHODS: To begin to explore how IL-1 signaling leads to the repression of AR mRNA levels, we performed comprehensive pathway analysis on our RNA sequencing data from IL-1-treated LNCaP PCa cells. Our pathway analysis predicted nuclear factor kappa B (NF-κB) p65 subunit (RELA), a canonical IL-1 signal transducer, to be significantly active and potentially regulate many genes, including AR. We used small interfering RNA (siRNA) to silence the NF-κB family of transcription factor subunits, RELA, RELB, c-REL, NFKB1, or NFKB2, in IL-1-treated LNCaP, C4-2, and C4-2B PCa cell lines. C4-2 and C4-2B cell lines are castration-resistant LNCaP sublines and represent progression toward metastatic PCa disease, and we have previously shown that IL-1 represses AR mRNA levels in C4-2 and C4-2B cells. RESULTS: siRNA revealed that RELA alone is sufficient to mediate IL-1 repression of AR mRNA and AR activity. Intriguingly, while LNCaP cells are more sensitive to IL-1-mediated repression of AR than C4-2 and C4-2B cells, RELA siRNA led to a more striking derepression of AR mRNA levels and AR activity in C4-2 and C4-2B cells than in LNCaP cells. CONCLUSIONS: These data indicate that there are RELA-independent mechanisms that regulate IL-1-mediated AR repression in LNCaP cells and suggest that the switch to RELA-dependent IL-1 repression of AR in C4-2 and C4-2B cells reflects changes in epigenetic and transcriptional programs that evolve during PCa disease progression.


Subject(s)
Interleukin-1/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/biosynthesis , Transcription Factor RelA/metabolism , Cell Line, Tumor , Disease Progression , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Interleukin-1alpha/pharmacology , Male , NF-kappa B/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Androgen/genetics , Transcription Factor RelA/genetics
3.
Prostate ; 78(8): 595-606, 2018 06.
Article in English | MEDLINE | ID: mdl-29527701

ABSTRACT

BACKGROUND: In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR+ ) PCa cells into AR negative (AR- ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. METHODS: LNCaP and PC3 PCa cells were treated with IL-1ß or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1ß, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. RESULTS: Comparative analysis of sequencing data from the AR+ LNCaP PCa cell line versus the AR- PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. CONCLUSIONS: Our data supports that IL-1 reprograms AR+ PCa cells to mimic AR- PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival.


Subject(s)
Interleukin-1/genetics , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Tumor Microenvironment/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Interleukin-1/immunology , Male , Mesenchymal Stem Cells , Phenotype , Prostatic Neoplasms/immunology , Receptors, Androgen/immunology , Tumor Microenvironment/immunology
4.
Cancer Res ; 77(18): 4745-4754, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28754673

ABSTRACT

In prostate cancer, androgen deprivation therapy (ADT) enhances the cytotoxic effects of radiotherapy. This effect is associated with weakening of the DNA damage response (DDR) normally supported by the androgen receptor. As a significant number of patients will fail combined ADT and radiotherapy, we hypothesized that DDR may be driven by androgen receptor splice variants (ARV) induced by ADT. Investigating this hypothesis, we found that ARVs increase the clonogenic survival of prostate cancer cells after irradiation in an ADT-independent manner. Notably, prostate cancer cell irradiation triggers binding of ARV to the catalytic subunit of the critical DNA repair kinase DNA-PK. Pharmacologic inhibition of DNA-PKc blocked this interaction, increased DNA damage, and elevated prostate cancer cell death after irradiation. Our findings provide a mechanistic rationale for therapeutic targeting of DNA-PK in the context of combined ADT and radiotherapy as a strategy to radiosensitize clinically localized prostate cancer. Cancer Res; 77(18); 4745-54. ©2017 AACR.


Subject(s)
Androgen Antagonists/pharmacology , DNA Repair/genetics , DNA-Activated Protein Kinase/antagonists & inhibitors , Prostatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/genetics , Animals , Antineoplastic Agents/pharmacology , Benzamides , DNA Repair/radiation effects , DNA-Activated Protein Kinase/metabolism , Humans , Male , Mice , Mice, Nude , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Radiation, Ionizing , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL