Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Bioallied Sci ; 15(Suppl 2): S1132-S1135, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694000

ABSTRACT

Introduction: The pulp is the most negatively impacted tissue during decalcification since it comprises the soft tissue components. The most effective decalcifying agent would be safest for cells and tissues while yet removing all traces of calcium. It has to get the job done quickly and have good staining properties. Aim and Objective: The goal of this research was to identify the most effective decalcifying agent for diagnostic purposes via a qualitative investigation of tissue preservation and a comparison of the efficiency of several decalcifying agents on human permanent teeth, covering both hard and soft tissue components. Materials and Methods: Fifty premolars from people aged 14 to 30 who needed them pulled for orthodontics were included in the research. Participants in the research were divided into five groups of ten. Group A, Group B, Group C, Group D, and Group E make up the total of five groups. In this investigation, we compared the efficiency of five decalcifying chemicals and analyzed their staining patterns and effects on tooth tissue. Fifty premolar teeth from participants aged 14-30 years old were removed for orthodontic therapy. For the research, they were split up into five groups of ten. Group A contains 5% ethylenediaminetetraacetic acid (EDTA), Group B contains 10% formic acid, Group C contains 5% Trichoraticectic acid, Group D contains 5% nitric acid, and Group E contains 5% formalin-nitric acid. Result: Regardless of the specifics of the chosen decalcification solution, all procedures benefit from the inclusion of external stimuli. None of the variables were used in the current investigation; it was conducted only to compare various decalcifying chemicals. Conclusion: When time is not a concern, neutral EDTA may be recommended for preservation and presentation because of its ability to maintain soft-tissue integrity and provide high-quality staining. The formalin-nitric acid solution was one agent that appeared to strike a good compromise between speed and tissue preservation.

2.
J Pharm Bioallied Sci ; 15(Suppl 2): S952-S955, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694046

ABSTRACT

Background: Solid multicystic ameloblastoma (SMA) is a locally aggressive, benign odontogenic tumor of odontogenic origin with greater rate of recurrence. Epithelial-mesenchymal interaction plays an important role in tooth morphogenesis that shows complete differentiation of epithelial and ectomesenchymal components to the level of tooth formation. Tumor stroma in ameloblastoma is normal mature collagen that prevents differentiation to the level of tooth formation. Current study evaluates the role of stromal elements in aggressive behavior of SMA using picrosirius red staining with polarizing microscopy and CD44v6 immunohistochemistry (IHC). Objectives: To compare nature of collagen using picrosirius red staining under polarized microscope and IHC expression of CD44v6 marker in SMA and oral squamous cell carcinoma (OSCC). Methods: Thirty blocks were retrieved from departmental archives and subjected to picrosirius red staining and CD44v6 IHC staining. Slides stained with picrosirius red were observed under polarized microscope to report the birefringence pattern. IHC slides were annotated for intensity of staining of tumor cells. Results: In contrast to OSCC's 40% red, 40% yellowish-red, and 20% greenish-yellow birefringence, SMA displayed 87% red, 13% yellowish-red, and 0% greenish-yellow. Compared to OSCC, which had tumor cells stained 9% strongly, 64% moderately, 27% mildly, and 0% negatively, SMA revealed 0% strong, 10% moderate, 60% weak, and 30% negative staining. Conclusion: As opposed to OSCC, which exhibited a greater quantity of greenish-yellow birefringence of immature collagen, SMA showed predominantly red birefringence, which is suggestive of mature collagen with a lack of metastasis. Comparing SMA to OSCC, the lack of significant CD44v6 positivity suggests that there has not been perineural invasion or regional metastases in SMA.

3.
Bioorg Med Chem ; 25(20): 5799-5819, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28951094

ABSTRACT

A series of terminal nonyl chain and nucleobase modified analogues of (+)-EHNA (III) were synthesized and evaluated for their ability to inhibit adenosine deaminase (ADA). The constrained carbon analogues of (+)-EHNA, 7a-7h, 10a-c, 12, 13, 14 and 17a-c appeared very potent with Ki values in the low nanomolar range. Thio-analogues of (+)-EHNA 24a-e wherein 5'C of nonyl chain replaced by sulfur atom found to be less potent compared to (+)-EHNA. Docking of the representative compounds into the active site of ADA was performed to understand structure-activity relationships. Compounds 7a (Ki: 1.1nM) 7b (Ki: 5.2nM) and 26a (Ki: 5.9nM) showed suitable balance of potency, microsomal stability and demonstrated better pharmacokinetic properties as compared to (+)-EHNA and therefore may have therapeutic potential for various inflammatory diseases, hypertension and cancer.


Subject(s)
Adenine/analogs & derivatives , Adenosine Deaminase Inhibitors/chemistry , Adenine/chemical synthesis , Adenine/chemistry , Adenine/pharmacokinetics , Adenine/pharmacology , Adenosine Deaminase Inhibitors/chemical synthesis , Adenosine Deaminase Inhibitors/pharmacokinetics , Adenosine Deaminase Inhibitors/pharmacology , Catalytic Domain , Enzyme Activation/drug effects , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
4.
Eur J Med Chem ; 133: 268-286, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28390958

ABSTRACT

Glucokinase activators (GKAs) are among the emerging drug candidates for the treatment of type 2 diabetes (T2D). Despite effective blood glucose lowering in clinical trials, many pan-GKAs "acting both in pancreas and liver" have been discontinued from clinical development mainly because of their potential to cause hypoglycemia. Pan-GKAs over sensitize pancreatic GK, resulting in insulin secretion even at sub-normoglycemic level which might be a possible explanation for hypoglycemia. An alternative approach to minimize the risk of hypoglycemia is to use liver-directed GKAs, which are reported to be advancing well in clinical development. Here, we report the discovery and structure-activity relationship (SAR) studies on a novel 2-phenoxy-acetamide series with the aim of identifying a liver-directed GKA. Incorporation of a carboxylic acid moiety as an active hepatocyte uptake recognizing element at appropriate position of 2-phenoxy-acetamide core led to the identification of 26, a potent GKA with predominant liver-directed pharmacokinetics in mice. Compound 26 on oral administration significantly reduced blood glucose levels during an oral glucose tolerance test (oGTT) performed in diet-induced obese (DIO) mice, while showing no sign of hypoglycemia in normal C57 mice over a 10-fold dose range, even when dosed at fasted condition. Together, these data demonstrate a liver-directed GKA has beneficial effect on glucose homeostasis with reduced risk of hypoglycemia.


Subject(s)
Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Glucokinase/metabolism , Hyperglycemia/drug therapy , Hypoglycemia/chemically induced , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Animals , Blood Glucose/metabolism , Cells, Cultured , Enzyme Activators/adverse effects , Enzyme Activators/pharmacokinetics , Humans , Hyperglycemia/blood , Hyperglycemia/metabolism , Hypoglycemia/blood , Hypoglycemia/metabolism , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Liver/drug effects , Liver/metabolism , Mice, Obese , Molecular Docking Simulation , Rats
5.
Bioorg Med Chem Lett ; 22(13): 4341-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22658862

ABSTRACT

Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Carboxylic Acids/chemistry , Enzyme Inhibitors/chemistry , Pyrazoles/chemistry , Thiophenes/chemistry , Alcohol Oxidoreductases/metabolism , Animals , Binding Sites , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacokinetics , Computer Simulation , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Kidney/enzymology , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Protein Structure, Tertiary , Pyrazoles/chemical synthesis , Pyrazoles/therapeutic use , Rats , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/therapeutic use
6.
Eur J Pharmacol ; 652(1-3): 157-63, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-20540938

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) inhibiton is a well recognized approach to treat Type 2 diabetes. RBx-0597 is a novel DPP-IV inhibitor discovered in our laboratory. The aim of the present study was to characterize the pharmacological profiles of RBx-0597 in vitro and in vivo as an anti-diabetic agent. RBx-0597 inhibited human, mouse and rat plasma DPP-IV activity with IC(50) values of 32, 31 and 39nM respectively. RBx-0597 exhibited significant selectivity over dipeptidyl peptidase8 (DPP-8), dipeptidyl peptidase9 (DPP-9) (150-300 fold) and other proline-specific proteases (>200-2000 fold). Kinetic analysis revealed that RBx-0597 is a competitive and slow binding DPP-IV inhibitor. In ob/ob mice, RBx-0597 (10mg/kg) inhibited plasma DPP-IV activity upto 50% 8h post-dose and showed a dose-dependent glucose excursion. RBx-0597 (10mg/kg) showed a significant glucose lowering effect (∼25% AUC of △ blood glucose) which was sustained till 12h, significantly increased the active glucagon-like peptide-1(GLP-1) and insulin levels. It showed a favourable pharmacokinetic profile (plasma clearance:174ml/min/kg; C(max) 292ng/ml; T(1/2) 0.28h; T(max) 0.75h and V(ss) 4.13L/kg) in Wistar rats with the oral bioavailability (F(oral)) of 65%. In summary, the present studies indicate that RBx-0597 is a novel DPP-IV inhibitor with anti-hyperglycemic effect and a promising candidate for further development as a drug for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Glucose Tolerance Test , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin/therapeutic use , Kinetics , Male , Mice , Mice, Obese , Rats , Rats, Wistar
7.
ACS Med Chem Lett ; 2(12): 919-23, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900281

ABSTRACT

l-2-Hydroxy acid oxidase (Hao2) is a peroxisomal enzyme with predominant expression in the liver and kidney. Hao2 was recently identified as a candidate gene for blood pressure quantitative trait locus in rats. To investigate a pharmacological role of Hao2 in the management of blood pressure, selective Hao2 inhibitors were developed. Optimization of screening hits 1 and 2 led to the discovery of compounds 3 and 4 as potent and selective rat Hao2 inhibitors with pharmacokinetic properties suitable for in vivo studies in rats. Treatment with compound 3 or 4 resulted in a significant reduction or attenuation of blood pressure in an established or developing model of hypertension, deoxycorticosterone acetate-treated rats. This is the first report demonstrating a pharmacological benefit of selective Hao2 inhibitors in a relevant model of hypertension.

SELECTION OF CITATIONS
SEARCH DETAIL