Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Immunol Rev ; 317(1): 166-186, 2023 08.
Article in English | MEDLINE | ID: mdl-37144896

ABSTRACT

The pulmonary surfactant system of the lung is a lipid and protein complex, which regulates the biophysical properties of the alveoli to prevent lung collapse and the innate immune system in the lung. Pulmonary surfactant is a lipoprotein complex consisting of 90% phospholipids and 10% protein, by weight. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), exist at very high concentrations in the extracellular alveolar compartments. We have reported that one of the most dominant molecular species of PG, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and PI inhibit inflammatory responses induced by multiple toll-like receptors (TLR2/1, TLR3, TLR4, and TLR2/6) by interacting with subsets of multiprotein receptor components. These lipids also exert potent antiviral effects against RSV and influenza A, in vitro, by inhibiting virus binding to host cells. POPG and PI inhibit these viral infections in vivo, in multiple animal models. Especially noteworthy, these lipids markedly attenuate SARS-CoV-2 infection including its variants. These lipids are natural compounds that already exist in the lung and, thus, are less likely to cause adverse immune responses by hosts. Collectively, these data demonstrate that POPG and PI have strong potential as novel therapeutics for applications as anti-inflammatory compounds and preventatives, as treatments for broad ranges of RNA respiratory viruses.


Subject(s)
COVID-19 , Pulmonary Surfactants , Animals , Humans , Phospholipids/metabolism , Pulmonary Surfactants/therapeutic use , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Toll-Like Receptor 2 , SARS-CoV-2 , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Phosphatidylglycerols/therapeutic use , Phosphatidylglycerols/pharmacology
2.
Am J Respir Cell Mol Biol ; 62(3): 354-363, 2020 03.
Article in English | MEDLINE | ID: mdl-31545652

ABSTRACT

Comparisons of infectivity among the clinically important nontuberculous mycobacteria (NTM) species have not been explored in great depth. Rapid-growing mycobacteria, including Mycobacterium abscessus and M. porcinum, can cause indolent but progressive lung disease. Slow-growing members of the M. avium complex are the most common group of NTM to cause lung disease, and molecular approaches can now distinguish between several distinct species of M. avium complex including M. intracellulare, M. avium, M. marseillense, and M. chimaera. Differential infectivity among these NTM species may, in part, account for differences in clinical outcomes and response to treatment; thus, knowing the relative infectivity of particular isolates could increase prognostication accuracy and enhance personalized treatment. Using human macrophages, we investigated the infectivity and virulence of nine NTM species, as well as multiple isolates of the same species. We also assessed their capacity to evade killing by the antibacterial peptide cathelicidin (LL-37). We discovered that the ability of different NTM species to infect macrophages varied among the species and among isolates of the same species. Our biochemical assays implicate modified phospholipids, which may include a phosphatidylinositol or cardiolipin backbone, as candidate antagonists of LL-37 antibacterial activity. The high variation in infectivity and virulence of NTM strains suggests that more detailed microbiological and biochemical characterizations are necessary to increase our knowledge of NTM pathogenesis.


Subject(s)
Antimicrobial Cationic Peptides/antagonists & inhibitors , Immune Evasion/physiology , Membrane Lipids/physiology , Nontuberculous Mycobacteria/pathogenicity , Phospholipids/physiology , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/immunology , Chromatography, Thin Layer , Escherichia coli/drug effects , Humans , Macrophages/microbiology , Macrophages, Alveolar/microbiology , Membrane Lipids/isolation & purification , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/physiology , Phospholipids/isolation & purification , Phylogeny , Species Specificity , THP-1 Cells , Virulence , Cathelicidins
3.
J Biol Chem ; 295(6): 1704-1715, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31882535

ABSTRACT

The influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden. In this study, we examined whether palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI) effectively antagonize (H1N1)pdm09 infection. POPG and PI markedly suppressed cytopathic effects and attenuated viral gene expression in (H1N1)pdm09-infected Madin-Darby canine kidney cells. POPG and PI bound to (H1N1)pdm09 with high affinity and disrupted viral spread from infected to noninfected cells in tissue culture and also reduced (H1N1)pdm09 propagation by a factor of 102 after viral infection was established in vitro In a mouse infection model of (H1N1)pdm09, POPG and PI significantly reduced lung inflammation and viral burden. Of note, when mice were challenged with a typically lethal dose of 1000 plaque-forming units of (H1N1)pdm09, survival after 10 days was 100% (14 of 14 mice) with the POPG treatment compared with 0% (0 of 14 mice) without this treatment. POPG also significantly reduced inflammatory infiltrates and the viral burden induced by (H1N1)pdm09 infection in a ferret model. These findings indicate that anionic phospholipids potently and efficiently disrupt influenza infections in animal models.


Subject(s)
Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Phosphatidylglycerols/therapeutic use , Phosphatidylinositols/therapeutic use , Animals , Antiviral Agents/pharmacology , Disease Models, Animal , Dogs , Female , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/pathology , Phosphatidylglycerols/pharmacology , Phosphatidylinositols/pharmacology , Pulmonary Surfactants/pharmacology , Pulmonary Surfactants/therapeutic use
4.
J Lipid Res ; 57(6): 993-1005, 2016 06.
Article in English | MEDLINE | ID: mdl-27095543

ABSTRACT

The pulmonary surfactant phospholipid, 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG), potently inhibits toll-like receptor (TLR)2 and TLR4 signaling from the cell surface of macrophages. Analogs of POPG that vary in polar head group length, hydroxylation, and alkyl branching were synthesized using a phospholipase D-catalyzed transphosphatidylation reaction and a 1-palmitoyl-2-oleoyl phosphatidylcholine substrate. Lipid analogs with C3 and C4 alkyl head group length (POP-propanol and POP-butanol) are less effective than POPG as TLR2 and TLR4 antagonists. However, adding a hydroxyl group at the alkyl chain 3- or 4-position (POP-propanediols or POP-butanediols) greatly increased their inhibitory effects against TLR2 and TLR4. POP-2',2'-dimethylpropanediol is a weak inhibitor of TLR2 and TLR4 activation that results in arachidonic acid release, but an effective inhibitor of TLR4 activation that results in TNF-α production. Addition of an amino group at the alkyl-2 position (POP-2'-aminopropanediol) completely abolished the antagonism of TLRs 2 and 4. Multiple analogs strongly bind to the TLR4 coreceptors, cluster of differentiation 14 (CD14) and myeloid differentiation 2, but competition for di[3-deoxy-D-manno-octulosonyl]-lipid A binding to CD14 is the best predictor of biological activity at the cellular level. Collectively, these findings identify new compounds for antagonizing TLR2 and TLR4 activation and define structural properties of POPG analogs for discriminating between two TLR systems.


Subject(s)
Inflammation/drug therapy , Phosphatidylglycerols/administration & dosage , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Animals , Cell Membrane/drug effects , Eicosanoids/administration & dosage , Eicosanoids/chemistry , Endotoxins/administration & dosage , Endotoxins/chemistry , Humans , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharide Receptors/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Phosphatidylglycerols/chemistry , Pulmonary Surfactants/administration & dosage , Pulmonary Surfactants/chemistry , RAW 264.7 Cells , Signal Transduction/drug effects , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors
5.
J Lipid Res ; 56(3): 578-587, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25561461

ABSTRACT

Respiratory syncytial virus (RSV) infects nearly all children under age 2, and reinfection occurs throughout life, seriously impacting adults with chronic pulmonary diseases. Recent data demonstrate that the anionic pulmonary surfactant lipid phosphatidylglycerol (PG) exerts a potent antiviral effect against RSV in vitro and in vivo. Phosphatidylinositol (PI) is also an anionic pulmonary surfactant phospholipid, and we tested its antiviral activity. PI liposomes completely suppress interleukin-8 production from BEAS2B epithelial cells challenged with RSV. The presence of PI during viral challenge in vitro reduces infection by a factor of >10(3). PI binds RSV with high affinity, preventing virus attachment to epithelial cells. Intranasal inoculation with PI along with RSV in mice reduces the viral burden 30-fold, eliminates the influx of inflammatory cells, and reduces tissue histopathology. Pharmacological doses of PI persist for >6 h in mouse lung. Pretreatment of mice with PI at 2 h prior to viral infection effectively suppresses inflammation and reduces the viral burden by 85%. These data demonstrate that PI has potent antiviral properties, a long residence time in the extracellular bronchoalveolar compartment, and a significant prophylaxis window. The findings demonstrate PG and PI have complementary roles as intrinsic, innate immune antiviral mediators in the lung.


Subject(s)
Immunity, Innate/drug effects , Lung/immunology , Phosphatidylinositols/pharmacology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Viruses/immunology , Animals , Cell Line , Humans , Mice , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology
6.
FASEB J ; 28(12): 5349-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223608

ABSTRACT

The short palate, lung and nasal epithelial clone 1 (SPLUNC1) protein is a member of the palate, lung, and nasal epithelium clone (PLUNC) family, also known as bactericidal/permeability-increasing (BPI) fold-containing protein, family A, member 1 (BPIFA1). SPLUNC1 is an abundant protein in human airways, but its function remains poorly understood. The lipid ligands of SPLUNC1 as well as other PLUNC family members are largely unknown, although some reports provide evidence that lipopolysaccharide (LPS) could be a lipid ligand. Unlike previous hypotheses, we found significant structural differences between SPLUNC1 and BPI. Recombinant SPLUNC1 produced in HEK 293 cells harbored several molecular species of sphingomyelin and phosphatidylcholine as its ligands. Significantly, in vitro lipid-binding studies failed to demonstrate interactions between SPLUNC1 and LPS, lipoteichoic acid, or polymyxin B. Instead, one of the major and most important pulmonary surfactant phospholipids, dipalmitoylphosphatidylcholine (DPPC), bound to SPLUNC1 with high affinity and specificity. We found that SPLUNC1 could be the first protein receptor for DPPC. These discoveries provide insight into the specific determinants governing the interaction between SPLUNC1 and lipids and also shed light on novel functions that SPLUNC1 and other PLUNC family members perform in host defense.


Subject(s)
Glycoproteins/chemistry , Immunity, Innate , Lipids/chemistry , Phosphoproteins/chemistry , Base Sequence , DNA Primers , Glycoproteins/metabolism , HEK293 Cells , Humans , Ligands , Phosphoproteins/metabolism , Protein Conformation
7.
J Lipid Res ; 54(8): 2133-2143, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23749985

ABSTRACT

Respiratory syncytial virus (RSV) causes respiratory tract infections in young children, and significant morbidity and mortality in the elderly, immunosuppressed, and immunocompromised patients and in patients with chronic lung diseases. Recently, we reported that the pulmonary surfactant phospholipid palmitoyl-oleoyl-phosphatidylglycerol (POPG) inhibited RSV infection in vitro and in vivo by blocking viral attachment to epithelial cells. Simultaneous application of POPG along with an RSV challenge to mice markedly attenuated infection and associated inflammatory responses. Based on these findings, we expanded our studies to determine whether POPG is effective for prophylaxis and postinfection treatment for RSV infection. In vitro application of POPG at concentrations of 0.2-1.0 mg/ml at 24 h after RSV infection of HEp-2 cells suppressed interleukin-8 production up to 80% and reduced viral plaque formation by 2-6 log units. In vivo, the turnover of POPG in mice is relatively rapid, making postinfection application impractical. Intranasal administration of POPG (0.8-3.0 mg), 45 min before RSV inoculation in mice reduced viral infection by 1 log unit, suppressed inflammatory cell appearance in the lung, and suppressed virus-elicited interferon-γ production. These findings demonstrate that POPG is effective for short-term protection of mice against subsequent RSV infection and that it has potential for application in humans.


Subject(s)
Chemoprevention , Phosphatidylglycerols/therapeutic use , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/drug effects , Animals , Cells, Cultured , Humans , Interleukin-8/antagonists & inhibitors , Interleukin-8/biosynthesis , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/virology , Structure-Activity Relationship , Time Factors
9.
Am J Respir Cell Mol Biol ; 46(4): 479-87, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22052877

ABSTRACT

Influenza A virus (IAV) is a worldwide public health problem causing 500,000 deaths each year. Palmitoyl-oleoyl-phosphatidylglycerol (POPG) is a minor component of pulmonary surfactant, which has recently been reported to exert potent regulatory functions upon the innate immune system. In this article, we demonstrate that POPG acts as a strong antiviral agent against IAV. POPG markedly attenuated IL-8 production and cell death induced by IAV in cultured human bronchial epithelial cells. The lipid also suppressed viral attachment to the plasma membrane and subsequent replication in Madin-Darby canine kidney cells. Two virus strains, H1N1-PR8-IAV and H3N2-IAV, bind to POPG with high affinity, but exhibit only low-affinity interactions with the structurally related lipid, palmitoyl-oleoyl-phosphatidylcholine. Intranasal inoculation of H1N1-PR8-IAV in mice, in the presence of POPG, markedly suppressed the development of inflammatory cell infiltrates, the induction of IFN-γ recovered in bronchoalveolar lavage, and viral titers recovered from the lungs after 5 days of infection. These findings identify supplementary POPG as a potentially important new approach for treatment of IAV infections.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza A virus/pathogenicity , Influenza, Human/drug therapy , Phosphatidylglycerols/pharmacology , Administration, Intranasal , Animals , Bronchi/cytology , Bronchi/drug effects , Bronchi/virology , Cell Death/drug effects , Cells, Cultured , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza A virus/metabolism , Influenza, Human/virology , Interleukin-8/metabolism , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Phospholipids/metabolism , Viral Proteins/metabolism , Virus Replication/drug effects
10.
Am J Physiol Lung Cell Mol Physiol ; 301(4): L598-606, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21784968

ABSTRACT

Surfactant protein A (SP-A) regulates a variety of immune cell functions. We determined the ability of SP-A derived from normal and asthmatic subjects to modulate the inflammatory response elicited by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. Fourteen asthmatic and 10 normal control subjects underwent bronchoscopy with airway brushing and bronchoalveolar lavage (BAL). Total SP-A was extracted from BAL. The ratio of SP-A1 to total SP-A (SP-A1/SP-A) and the binding of total SP-A to M. pneumoniae membranes were determined. Airway epithelial cells from subjects were exposed to either normal or asthmatic SP-A before exposure to M. pneumoniae. IL-8 protein and MUC5AC mRNA were measured. Total BAL SP-A concentration did not differ between groups, but the percentage SP-A1 was significantly increased in BAL of asthmatic compared with normal subjects. SP-A1/SP-A significantly correlated with maximum binding of total SP-A to M. pneumoniae, but only in asthma. SP-A derived from asthmatic subjects did not significantly attenuate IL-8 and MUC5AC in the setting of M. pneumoniae infection compared with SP-A derived from normal subjects. We conclude that SP-A derived from asthmatic subjects does not abrogate inflammation effectively, and this dysfunction may be modulated by SP-A1/SP-A.


Subject(s)
Asthma/metabolism , Epithelial Cells/metabolism , Inflammation/metabolism , Mycoplasma pneumoniae/metabolism , Pulmonary Surfactant-Associated Protein A/metabolism , Recombinant Proteins/metabolism , Adult , Asthma/complications , Asthma/immunology , Asthma/microbiology , Asthma/physiopathology , Bronchial Provocation Tests , Bronchoalveolar Lavage Fluid/chemistry , Bronchoscopy , Case-Control Studies , Cell Membrane/metabolism , Cells, Cultured , Epithelial Cells/cytology , Female , HEK293 Cells , Humans , Inflammation/complications , Inflammation/immunology , Inflammation/microbiology , Inflammation/physiopathology , Interleukin-8/biosynthesis , Male , Mucin 5AC/biosynthesis , Mycoplasma pneumoniae/immunology , Plasmids , Polymerase Chain Reaction , Protein Binding , Pulmonary Surfactant-Associated Protein A/genetics , Pulmonary Surfactant-Associated Protein A/immunology , RNA, Messenger/analysis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Transfection
11.
J Infect Dis ; 203(9): 1240-8, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21357942

ABSTRACT

BACKGROUND: Cigarette smoke (CS) exposure is an epidemiological risk factor for tuberculosis, although the biological basis has not been elucidated. METHODS: We exposed C57BL/6 mice to CS for 14 weeks and examined their ability to control an aerosol infection of Mycobacterium tuberculosis Erdman. RESULTS: CS-exposed mice had more M. tuberculosis isolated from the lungs and spleens after 14 and 30 d, compared with control mice. The CS-exposed mice had worse lung lesions and less lung and splenic macrophages and dendritic cells (DCs) producing interleukin12 and tumor necrosis factor α (TNF-α). There were significantly more interleukin 10-producing macrophages and DCs in the spleens of infected CS-exposed mice than in non-CS-exposed controls. CS-exposed mice also showed a diminished influx of interferon γ-producing and TNF-α-producing CD4(+) and CD8(+) effector and memory T cells into the lungs and spleens. There was a trend toward an increased number of viable intracellular M. tuberculosis in macrophages isolated from humans who smoke compared with nonsmokers. THP-1 human macrophages and primary human alveolar macrophages exposed to CS extract, nicotine, or acrolein showed an increased burden of intracellular M. tuberculosis. CONCLUSION: CS suppresses the protective immune response to M. tuberculosis in mice, human THP-1 cells, and primary human alveolar macrophages.


Subject(s)
Disease Susceptibility , Mycobacterium tuberculosis/immunology , Smoking/adverse effects , Tuberculosis/immunology , Animals , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
12.
J Biol Chem ; 286(10): 7841-7853, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21205826

ABSTRACT

Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38(MAPK) and p44/42(ERK1/2) MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD(2) and PGE(2) from RAW264.7 cells and thromboxane B(2) (TXB(2)) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42(ERK1/2) or inactivation of cytosolic phospholipase A(2)α (cPLA(2)α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response.


Subject(s)
Bacterial Proteins/metabolism , Eicosanoids/metabolism , Macrophages, Alveolar/metabolism , Mycoplasma pneumoniae/metabolism , Phosphatidylglycerols/metabolism , Pneumonia, Mycoplasma/metabolism , Pulmonary Surfactants/metabolism , Animals , Bacterial Proteins/immunology , Bacterial Proteins/pharmacology , Cell Line , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Cysteine/analogs & derivatives , Cysteine/immunology , Cysteine/metabolism , Cysteine/pharmacology , Eicosanoids/immunology , Group IV Phospholipases A2/immunology , Group IV Phospholipases A2/metabolism , Humans , Lipopeptides/pharmacology , Lipoproteins/immunology , Lipoproteins/metabolism , Lipoproteins/pharmacology , Macrophages, Alveolar/immunology , Mice , Mitogen-Activated Protein Kinase Kinases/immunology , Mitogen-Activated Protein Kinase Kinases/metabolism , Mycoplasma pneumoniae/immunology , Phosphatidylglycerols/immunology , Phosphatidylglycerols/pharmacology , Pneumonia, Mycoplasma/immunology , Pulmonary Surfactants/immunology , Pulmonary Surfactants/pharmacology , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L220-30, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18487355

ABSTRACT

Mycoplasma pneumoniae is an extracellular pathogen, residing on mucosal surfaces of the respiratory and genital tracts. The lack of cell walls in mycoplasmas facilitates the direct contact of the bacterial membrane with the host cell. The cell membrane of mycoplasma is the major inducer of the host pathogenic response. Airway diseases caused by M. pneumoniae include bronchiolitis, bronchitis, and rarely bronchiectasis. In such disorders, neutrophil infiltration of the airways predominates. More recently, M. pneumoniae has been implicated in the pathogenesis of asthma. Epithelial cells play an important role in recruiting inflammatory cells into the airways. Since M. pneumoniae infection of human epithelial cells induces expression of IL-8-a potent activator of neutrophils-we investigated the signaling and transcriptional mechanisms by which mycoplasma membrane induces expression of this chemokine. In BEAS-2B human bronchial epithelial cells, mycoplasma membrane fraction (MMF) increased IL-8 mRNA and protein production. Activation of the transcriptional elements activating protein-1, nuclear factor-interleukin-6, and particularly NF-kappaB are essential for optimal IL-8 production by MMF. The mitogen-activated protein kinases individually played a modest role in MMF-induced IL-8 production. Toll-like receptor-2 did not play a significant role in MMF-induction of IL-8. Antibiotics with microbicidal activity against M. pneumoniae are also known to have anti-inflammatory effects. Whereas clarithromycin, azithromycin, and moxifloxacin individually were able to inhibit TNF-alpha-induction of IL-8, each failed to inhibit MMF-induction of IL-8.


Subject(s)
Bronchi/metabolism , Cell Membrane , Epithelial Cells/metabolism , Gene Expression Regulation , Interleukin-8/biosynthesis , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/metabolism , Anti-Bacterial Agents/pharmacology , Asthma/immunology , Asthma/metabolism , Asthma/microbiology , Bronchi/immunology , Epithelial Cells/immunology , Extracellular Signal-Regulated MAP Kinases/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Interleukin-8/immunology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Pneumonia, Mycoplasma/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Transcription Factors/immunology , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/immunology , Tumor Necrosis Factor-alpha/pharmacology
14.
J Biol Chem ; 279(35): 36586-92, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15220333

ABSTRACT

The Saccharomyces cerevisiae OLE1 gene encodes a membrane-bound Delta9 fatty-acid desaturase, whose expression is regulated through transcriptional and mRNA stability controls. In wild type cells grown on fatty acid-free medium, OLE1 mRNA has a half-life of 10 +/- 1.5 min (basal stability) that becomes highly unstable when cells are exposed to unsaturated fatty acids (regulated stability). Activation of OLE1 transcription is dependent on N-terminal fragments of two membrane proteins, Mga2p and Spt23p, that are proteolytically released from the membrane by a ubiquitin-mediated mechanism. Surprisingly, disruption of the MGA2 gene also reduces the half-life of the OLE1 transcript and abolishes fatty acid regulated instability. Disruption of its cognate, SPT23, has no effect on the half-life of the mRNA. Mga2p appears to have two distinct functions with respect to the OLE1 mRNA stability: a stabilizing effect in cells grown in fatty acid-free medium and a destabilizing function in cells that are exposed to unsaturated fatty acids. These functions are independent of OLE1 transcription and can confer basal and regulated stability on OLE1 mRNAs that are produced under the control of the unrelated GAL1 promoter. Expression of soluble, N-terminal fragments of Mga2p stabilize the transcript but do not confer fatty acid-regulated instability on the mRNA suggesting that the stabilizing functions of Mga2p do not require membrane processing and that modifications to the protein introduced during proteolysis may play a role in the destabilizing effect. An analysis of mutants that are defective in mRNA degradation indicate that the Mga2p-requiring control mechanism that regulates the fatty acid-mediated instability of the OLE1 transcript acts by activating exosomal 3' --> 5'-exonuclease degradation activity.


Subject(s)
Endoplasmic Reticulum/metabolism , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Cell Membrane/metabolism , DNA/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Kinetics , Membrane Proteins , Models, Genetic , Plasmids/metabolism , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Stearoyl-CoA Desaturase , Time Factors , Trans-Activators/metabolism , Transcription Factors , Transcriptional Activation
15.
J Biol Chem ; 278(46): 45269-79, 2003 Nov 14.
Article in English | MEDLINE | ID: mdl-12947098

ABSTRACT

The Saccharomyces cerevisiae OLE1 gene encodes a membrane-bound Delta-9 fatty acid desaturase, whose expression is regulated by unsaturated fatty acids through both transcriptional and mRNA stability controls. In fatty acid-free medium, the mRNA has a half-life of 10 +/- 1.5 min (basal stability) that drops to 2 +/- 1.5 min when cells are exposed to unsaturated fatty acids (regulated stability). A deletion analysis of elements within the transcript revealed that the sequences within the protein-coding region that encode transmembrane sequences and a part of the cytochrome b5 domain are essential for the basal stability of the transcript. Deletion of any of the three essential elements produced unstable transcripts and loss of regulated instability. By contrast, substitution of the 3'-untranslated region with that of the stable PGK1 gene did not affect the basal stability of the transcript and did not block regulated decay. Given that Ole1p is a membrane-bound protein whose activities are a major determinant of membrane fluidity, we asked whether membrane-associated translation of the protein was essential for basal and regulated stability. Insertion of stop codons within the transcript that blocked either translation of the entire protein or parts of the protein required for co-translation insertion of Ole1p had no effect. We conclude that the basal and regulated stability of the OLE1 transcript is resistant to the nonsense-mediated decay pathway and that the essential protein-encoding elements for basal stability act cooperatively as stabilizing sequences through RNA-protein interactions via a translation-independent mechanism.


Subject(s)
Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/physiology , Protein Biosynthesis , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , 3' Untranslated Regions , Codon, Terminator , Cytochromes b5/chemistry , DNA/metabolism , Gene Deletion , Green Fluorescent Proteins , Kinetics , Luminescent Proteins/metabolism , Models, Genetic , Plasmids/metabolism , Protein Binding , Protein Structure, Tertiary , RNA/metabolism , Stearoyl-CoA Desaturase , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...