Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273366

ABSTRACT

Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Molecular Imaging , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Molecular Imaging/methods , COVID-19/metabolism , COVID-19/diagnostic imaging , SARS-CoV-2/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Animals , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods
2.
Pharmaceuticals (Basel) ; 17(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38931352

ABSTRACT

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder. Plexiform neurofibromas (PNFs) are benign tumors commonly formed in patients with NF1. PNFs have a high incidence of developing into malignant peripheral nerve sheath tumors (MPNSTs) with a 5-year survival rate of only 30%. Therefore, the accurate diagnosis and differentiation of MPNSTs from benign PNFs are critical to patient management. We studied a fluorine-18 labeled tryptophan positron emission tomography (PET) radiotracer, 1-(2-[18F]fluoroethyl)-L-tryptophan (L-[18F]FETrp), to detect NF1-associated tumors in an animal model. An ex vivo biodistribution study of L-[18F]FETrp showed a similar tracer distribution and kinetics between the wild-type and triple mutant mice with the highest uptake in the pancreas. Bone uptake was stable. Brain uptake was low during the 90-min uptake period. Static PET imaging at 60 min post-injection showed L-[18F]FETrp had a comparable tumor uptake with [18F]fluorodeoxyglucose (FDG). However, L-[18F]FETrp showed a significantly higher tumor-to-brain ratio than FDG (n = 4, p < 0.05). Sixty-minute-long dynamic PET scans using the two radiotracers showed similar kidney, liver, and lung kinetics. A dysregulated tryptophan metabolism in NF1 mice was further confirmed using immunohistostaining. L-[18F]FETrp is warranted to further investigate differentiating malignant NF1 tumors from benign PNFs. The study may reveal the tryptophan-kynurenine pathway as a therapeutic target for treating NF1.

3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901893

ABSTRACT

Abusive head trauma (AHT) is a serious traumatic brain injury and the leading cause of death in children younger than 2 years. The development of experimental animal models to simulate clinical AHT cases is challenging. Several animal models have been designed to mimic the pathophysiological and behavioral changes in pediatric AHT, ranging from lissencephalic rodents to gyrencephalic piglets, lambs, and non-human primates. These models can provide helpful information for AHT, but many studies utilizing them lack consistent and rigorous characterization of brain changes and have low reproducibility of the inflicted trauma. Clinical translatability of animal models is also limited due to significant structural differences between developing infant human brains and the brains of animals, and an insufficient ability to mimic the effects of long-term degenerative diseases and to model how secondary injuries impact the development of the brain in children. Nevertheless, animal models can provide clues on biochemical effectors that mediate secondary brain injury after AHT including neuroinflammation, excitotoxicity, reactive oxygen toxicity, axonal damage, and neuronal death. They also allow for investigation of the interdependency of injured neurons and analysis of the cell types involved in neuronal degeneration and malfunction. This review first focuses on the clinical challenges in diagnosing AHT and describes various biomarkers in clinical AHT cases. Then typical preclinical biomarkers such as microglia and astrocytes, reactive oxygen species, and activated N-methyl-D-aspartate receptors in AHT are described, and the value and limitations of animal models in preclinical drug discovery for AHT are discussed.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Child Abuse , Craniocerebral Trauma , Child , Humans , Animals , Sheep , Swine , Infant , Reproducibility of Results , Child Abuse/diagnosis , Craniocerebral Trauma/diagnosis
4.
Semin Ultrasound CT MR ; 43(1): 19-30, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35164906

ABSTRACT

Characteristic arterial spin labeling (ASL) perfusion patterns are seen in a wide variety of pediatric brain pathologies, highlighting the potential added value and prognostic role of this magnetic resonance imaging (MRI) perfusion-weighted imaging modality. Our objective is to review the basic clinical physics, technical underpinnings, and artifacts and challenges as we highlight some of the most clinically relevant pathologies to the application of ASL in the pediatric setting.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Artifacts , Child , Humans , Perfusion , Spin Labels
5.
J Vis Exp ; (175)2021 09 21.
Article in English | MEDLINE | ID: mdl-34633385

ABSTRACT

The kynurenine pathway (KP) is a primary route for tryptophan metabolism. Evidence strongly suggests that metabolites of the KP play a vital role in tumor proliferation, epilepsy, neurodegenerative diseases, and psychiatric illnesses due to their immune-modulatory, neuro-modulatory, and neurotoxic effects. The most extensively used positron emission tomography (PET) agent for mapping tryptophan metabolism, α-[11C]methyl-L-tryptophan ([11C]AMT), has a short half-life of 20 min with laborious radiosynthesis procedures. An onsite cyclotron is required to radiosynthesize [11C]AMT. Only a limited number of centers produce [11C]AMT for preclinical studies and clinical investigations. Hence, the development of an alternative imaging agent that has a longer half-life, favorable in vivo kinetics, and is easy to automate is urgently needed. The utility and value of 1-(2-[18F]fluoroethyl)-L-tryptophan, a fluorine-18-labeled tryptophan analog, has been reported in preclinical applications in cell line-derived xenografts, patient-derived xenografts, and transgenic tumor models. This paper presents a protocol for the radiosynthesis of 1-(2-[18F]fluoroethyl)-L-tryptophan using a one-pot, two-step strategy. Using this protocol, the radiotracer can be produced in a 20 ± 5% (decay corrected at the end of synthesis, n > 20) radiochemical yield, with both radiochemical purity and enantiomeric excess of over 95%. The protocol features a small precursor amount with no more than 0.5 mL of reaction solvent in each step, low loading of potentially toxic 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (K222), and an environmentally benign and injectable mobile phase for purification. The protocol can be easily configured to produce 1-(2-[18F]fluoroethyl)-L-tryptophan for clinical investigation in a commercially available module.


Subject(s)
Radiopharmaceuticals , Tryptophan , Humans , Kynurenine , Positron-Emission Tomography , Radiochemistry
6.
Pediatr Radiol ; 51(6): 966-970, 2021 May.
Article in English | MEDLINE | ID: mdl-33999238

ABSTRACT

Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.


Subject(s)
Child Abuse , Craniocerebral Trauma , Child , Child Abuse/diagnosis , Craniocerebral Trauma/diagnostic imaging , Diagnostic Imaging , Diagnostic Tests, Routine , Humans , Infant , Prognosis
7.
Pediatr Radiol ; 51(6): 939-946, 2021 May.
Article in English | MEDLINE | ID: mdl-33830289

ABSTRACT

BACKGROUND: Birth trauma accounts for 1-2% of the mortality in newborns with significant intracranial injuries presenting in the immediate postnatal period. However, a significant number of asymptomatic neonates harbor birth-related intracranial hemorrhage (ICH), with birth-related subdural hemorrhage (SDH) being a common occurrence on infant brain CT and MRI studies performed as a standard of care for a variety of reasons. Although clinically insignificant, birth-related SDH is frequently brought up in courts as an alternative explanation for SDH in suspected abusive head trauma. OBJECTIVE: The aim of this study was to determine prevalence, imaging morphology and distribution of birth-related SDHs on brain CT and MRI studies obtained as a standard of care in infants up to 1 month old. We further tried to ascertain the relationship of birth-related SDHs with mode of delivery and birth weight. MATERIALS AND METHODS: Infants up to the age of 1 month who had CT or MRI of the brain performed between Jan. 1, 2018, and March 29, 2020, were included in this retrospective observational study. In addition to the imaging data, we reviewed clinical history, birth history including birth weight and mode of delivery, and final diagnoses. RESULTS: Two hundred six infants younger than 30 days (range 0-29 days, mean 11.9 days, median 11 days and standard deviation [SD] 8.4 days) had a CT or MRI study during the study period. Among these, 58 infants were excluded as per the exclusion criteria. Among the included 148 infants, 88 (59.5%) had no imaging evidence of SDH. An additional 56 (37.8%) infants were assessed as having birth-related SDH based on review of clinical data. Within the birth-related SDH cohort (56 infants), only supratentorial SDH was identified in 5 (8.9%), only infratentorial SDH was identified in 14 (25%), while SDHs within both compartments were identified in 37 (66.1%) infants. The most common location for supratentorial birth-related SDH was along the occipital lobes (31/42, 73.8%), with other common locations being along the posterior interhemispheric fissure (30/42, 71.4%) and fronto-parietal convexity (9/42, 21.4%). The distribution of posterior fossa SDH was along the tentorium (38/51, 74.5%), along the cerebellum (38/51, 74.5%) and in both the locations (25/51, 49.0%). The rate of SDH was significantly higher in vaginal delivery group (46/84, 54.7%) as compared to caesarean section group (10/57, 17.5%) (P<0.05). We did not find any statistically significant difference between the birth weights of normal and birth-related SDH cohorts (P>0.05). CONCLUSION: Birth-related SDH is a common occurrence, with our study suggesting a prevalence of 37.8%. The most common distribution of birth-related SDH is within both the supra- and infratentorial compartments (66.1%) followed by infratentorial compartment (25%). The rate of birth-related SDH was significantly higher in vaginal delivery group as compared to caesarean section group.


Subject(s)
Cesarean Section , Hematoma, Subdural , Hematoma, Subdural/diagnostic imaging , Hematoma, Subdural/epidemiology , Humans , Infant, Newborn , Magnetic Resonance Imaging , Neuroimaging , Observational Studies as Topic , Prevalence , Retrospective Studies
8.
Ann Pediatr Cardiol ; 13(3): 267-268, 2020.
Article in English | MEDLINE | ID: mdl-32863669

ABSTRACT

A 3-year-old male presents to the emergency department with chief complaints of fever and vomiting. He had a positive rapid streptococcus throat test with cervical lymphadenopathy. The patient was started on antibiotics. On examination, there was diffuse erythematous macular rash on the chest. Laboratory tests revealed elevated white cell count and C-reactive protein. Electrocardiogram was notable for prolonged PR interval indicating 1st degree atrioventricular block. Echocardiogram revealed ectasia of the right coronary artery (RCA). A presumptive diagnosis of Kawasaki disease was made and the patient was started on high-dose aspirin and intravenous immunoglobulins. Cardiac computed tomography angiography (CTA) showed an aneurysm of the proximal RCA measuring up to 7.4 mm. The RCA immediately proximal to the aneurysm measured 3 mm in diameter. The Z score was 13.4. Oblique coronal image from cardiac CTA and volume rendered images demonstrated an aneurysm of the proximal RCA. The patient improved with treatment.

10.
Hum Mol Genet ; 28(4): 525-538, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30304524

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are critical for protein translation. Pathogenic variants of ARSs have been previously associated with peripheral neuropathy and multisystem disease in heterozygotes and homozygotes, respectively. We report seven related children homozygous for a novel mutation in tyrosyl-tRNA synthetase (YARS, c.499C > A, p.Pro167Thr) identified by whole exome sequencing. This variant lies within a highly conserved interface required for protein homodimerization, an essential step in YARS catalytic function. Affected children expressed a more severe phenotype than previously reported, including poor growth, developmental delay, brain dysmyelination, sensorineural hearing loss, nystagmus, progressive cholestatic liver disease, pancreatic insufficiency, hypoglycemia, anemia, intermittent proteinuria, recurrent bloodstream infections and chronic pulmonary disease. Related adults heterozygous for YARS p.Pro167Thr showed no evidence of peripheral neuropathy on electromyography, in contrast to previous reports for other YARS variants. Analysis of YARS p.Pro167Thr in yeast complementation assays revealed a loss-of-function, hypomorphic allele that significantly impaired growth. Recombinant YARS p.Pro167Thr demonstrated normal subcellular localization, but greatly diminished ability to homodimerize in human embryonic kidney cells. This work adds to a rapidly growing body of research emphasizing the importance of ARSs in multisystem disease and significantly expands the allelic and clinical heterogeneity of YARS-associated human disease. A deeper understanding of the role of YARS in human disease may inspire innovative therapies and improve care of affected patients.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Loss of Function Mutation/genetics , Tyrosine-tRNA Ligase/genetics , Adult , Catalytic Domain/genetics , Child, Preschool , Female , Genetic Diseases, Inborn/physiopathology , Hearing Loss, Sensorineural/diagnostic imaging , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Male , Mutation , Pedigree , Phenotype , Severity of Illness Index , Exome Sequencing , Yeasts/genetics
11.
Semin Ultrasound CT MR ; 36(6): 476-86, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26614131

ABSTRACT

Fetal brain magnetic resonance imaging (MRI) is a powerful tool in the diagnosis of symptomatic congenital cytomegalovirus infection, requiring a detailed search for specific features. A combination of anterior temporal lobe abnormalities, white matter lesions, and polymicrogyria is especially predictive. Fetal MRI may provide a unique opportunity to detect anterior temporal cysts and occipital horn septations, as dilation of these areas may decrease later in development. Cortical migration abnormalities, white matter abnormalities, cerebellar dysplasia, and periventricular calcifications are often better depicted on postnatal imaging but can also be detected on fetal MRI. We present the prenatal brain MRI findings seen in congenital cytomegalovirus infection and provide postnatal imaging correlation, highlighting the evolution of findings at different times in prenatal and postnatal developments.


Subject(s)
Craniofacial Abnormalities/pathology , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/pathology , Hydrocephalus/pathology , Magnetic Resonance Imaging/methods , Prenatal Diagnosis/methods , Diagnosis, Differential , Female , Humans , Infant, Newborn , Male , Statistics as Topic
12.
Semin Ultrasound CT MR ; 34(6): 578-99, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24332209

ABSTRACT

Together, leukemia and lymphoma account for half of all childhood malignancies. Leukemia and lymphoma arise from similar cell lines and can have overlapping imaging features; however, the clinical presentation, imaging strategies, and treatment protocols can vary substantially based on the specific subtype. Although imaging does not play a central role in staging or monitoring disease in childhood leukemia, findings on imaging may be the first indication of the diagnosis. Advanced imaging, especially positron emission tomography/computed tomography, has moved to the forefront of staging and treatment response evaluation in Hodgkin's disease and non-Hodgkin's lymphoma. Imaging also plays a key role in evaluating the myriad of treatment complications that are commonly seen with chemotherapy and associated neutropenia. Future efforts will be largely focused on decreasing radiation exposure to these children, utilizing reduced or radiation-free modalities, such as positron emission tomography/magnetic resonance and diffusion-weighted whole-body imaging with background suppression, as well as refining surveillance imaging strategies. The purpose of this article is to briefly review the classification of pediatric leukemia and lymphoma, illustrate common imaging findings at presentation throughout the body, describe staging and therapeutic response evaluation, and show a spectrum of commonly encountered complications of treatment.


Subject(s)
Leukemia/diagnosis , Lymphoma/diagnosis , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL