Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(12): 18813-18825, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349499

ABSTRACT

Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia-reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.


Subject(s)
Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , bcl-2-Associated X Protein/metabolism , Carnitine/pharmacology , Myocardium/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis
2.
Biology (Basel) ; 13(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392291

ABSTRACT

The myogenic differentiation potential of MSCs is a key factor in their potential use as a cell source for muscle tissue repair and regeneration. Additionally, evaluating the immunomodulatory properties of MSCs is important to highlight their potential for regulating inflammation and supporting tissue regeneration. Given the limited literature on muscle differentiation potential and immunomodulatory properties, this study aims to characterize rat ADP MSCs for treating muscle disease. We isolated MSCs from adipose tissues around the periscapular region of the rats. We used a monoculture method for the myogenic differentiation and modified the myogenic induction medium by supplementing it with the growth factors FGF, HGF, and IGF. In rat ADP MSCs, expression of the MSC-specific marker, CD90, was 87.7%, while CD44 was 42.8%. For genes involved in immunomodulation, IGF1 and TGFB1 were highly expressed, while IL6 was poorly expressed. In addition to their trilineage differentiation potential, ADP MSCs exhibited the capacity to differentiate into myogenic cell lines, as evidenced by changes in cell morphology, leading to elongated and aligned structures and the expression of the MyoD and MYOG antibodies. The study found that ADP MSCs show great clinical promise for muscle regeneration.

3.
Front Pharmacol ; 14: 1243258, 2023.
Article in English | MEDLINE | ID: mdl-37900170

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is known to progress to cirrhosis and hepatocellular carcinoma in some patients. Although NASH is associated with abnormal mitochondrial function related to lipid metabolism, mechanisms for the development and effective treatments are still unclear. Therefore, new approaches to elucidate the pathophysiology are needed. In the previous study, we generated liver organoids from different stages of NASH model mice that could recapitulate the part of NASH pathology. In the present study, we investigated the relationship between mitochondrial function and NASH disease by comparing NASH liver organoids (NLO) and control liver organoids (CLO). Compared with CLO, mitochondrial and organoid morphology was abnormal in NLO, with increased expression of mitochondrial mitogen protein, DRP1, and mitochondria-derived reactive oxygen species (ROS) production. Treatment of NLO with a DPR1 inhibitor, Mdivi-1 resulted in the improvement of morphology and the decreased expression of fibrosis-related markers, Col1a1 and Acta2. In addition, treatment of NASH model mice with Mdivi-1 showed a decrease in fatty liver. Mdivi-1 treatment also prevented fibrosis and ROS production in the liver. These results indicate that NLO undergoes enhanced metabolism and abnormal mitochondrial morphology compared with CLO. It was also suggested that Mdivi-1 may be useful as a therapeutic agent to ameliorate NASH pathology.

4.
Biology (Basel) ; 12(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37887022

ABSTRACT

Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation's role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions.

5.
Biomed Pharmacother ; 165: 115079, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37413906

ABSTRACT

Canine primary lung cancer (cPLC) is a rare malignant tumor in dogs, and exhibits poor prognosis. Effective therapeutic drugs against cPLC have not been established yet. Also, cPLC resembles human lung cancer in histopathological characteristics and gene expression profiles and thus could be an important research model for this disease. Three-dimensional organoid culture is known to recapitulate the tissue dynamics in vivo. We, therefore, tried to generate cPLC organoids (cPLCO) for analyzing the profiles of cPLC. After samples from cPLC and the corresponding normal lung tissue were collected, cPLCO were successfully generated, which recapitulated the tissue architecture of cPLC, expressed lung adenocarcinoma marker (TTF1), and exhibited tumorigenesis in vivo. The sensitivity of cPLCO to anti-cancer drugs was different among strains. RNA-sequencing analysis showed significantly upregulated 11 genes in cPLCO compared with canine normal lung organoids (cNLO). Moreover, cPLCO were enriched with the MEK-signaling pathway compared with cNLO. The MEK inhibitor, trametinib decreased the viability of several strains of cPLCO and inhibited the growth of cPLC xenografts. Collectively, our established cPLCO model might be a useful tool for identifying novel biomarkers for cPLC and a new research model for dog and human lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Pulmonary Medicine , Humans , Dogs , Animals , Translational Research, Biomedical , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Organoids , Mitogen-Activated Protein Kinase Kinases/metabolism
6.
Pharmaceutics ; 15(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514092

ABSTRACT

Animal-derived xenogeneic biomaterials utilized in different surgeries are promising for various applications in tissue engineering. However, tissue decellularization is necessary to attain a bioactive extracellular matrix (ECM) that can be safely transplanted. The main objective of the present study is to assess the structural integrity, biocompatibility, and potential use of various acellular biomaterials for tissue engineering applications. Hence, a bovine pericardium (BP), porcine pericardium (PP), and porcine tunica vaginalis (PTV) were decellularized using a Trypsin, Triton X (TX), and sodium dodecyl sulfate (SDS) (Trypsin + TX + SDS) protocol. The results reveal effective elimination of the cellular antigens with preservation of the ECM integrity confirmed via staining and electron microscopy. The elasticity of the decellularized PP (DPP) was markedly (p < 0.0001) increased. The tensile strength of DBP, and DPP was not affected after decellularization. All decellularized tissues were biocompatible with persistent growth of the adipose stem cells over 30 days. The staining confirmed cell adherence either to the peripheries of the materials or within their matrices. Moreover, the in vivo investigation confirmed the biocompatibility and degradability of the decellularized scaffolds. Conclusively, Trypsin + TX + SDS is a successful new protocol for tissue decellularization. Moreover, decellularized pericardia and tunica vaginalis are promising scaffolds for the engineering of different tissues with higher potential for the use of DPP in cardiovascular applications and DBP and DPTV in the reconstruction of higher-stress-bearing abdominal walls.

7.
Front Cardiovasc Med ; 10: 1182628, 2023.
Article in English | MEDLINE | ID: mdl-37469485

ABSTRACT

Background: Myocardial infarctions remain a leading cause of global deaths. Developing novel drugs to target cardiac remodeling after myocardial injury is challenging. There is an increasing interest in exploring natural cardioprotective agents and non-invasive tools like intraventricular pressure gradients (IVPG) and heart rate variability (HRV) analysis in myocardial infarctions. Trehalose (TRE), a natural disaccharide, shows promise in treating atherosclerosis, myocardial infarction, and neurodegenerative disorders. Objectives: The objective of this study was to investigate the effectiveness of TRE in improving cardiac functions measured by IVPG and HRV and reducing myocardial remodeling following myocardial infarction in rat model. Methods: Rats were divided into three groups: sham, myocardial infarction (MI), and trehalose-treated MI (TRE) groups. The animals in the MI and TRE groups underwent permanent ligation of the left anterior descending artery. The TRE group received 2% trehalose in their drinking water for four weeks after the surgery. At the end of the experiment, heart function was assessed using conventional echocardiography, novel color M-mode echocardiography for IVPG evaluation, and HRV analysis. After euthanasia, gross image scoring, histopathology, immunohistochemistry, and quantitative real-time PCR were performed to evaluate inflammatory reactions, oxidative stress, and apoptosis. Results: The MI group exhibited significantly lower values in multiple IVPG parameters. In contrast, TRE administration showed an ameliorative effect on IVPG changes, with results comparable to the sham group. Additionally, TRE improved HRV parameters, mitigated morphological changes induced by myocardial infarction, reduced histological alterations in wall mass, and suppressed inflammatory reactions within the infarcted heart tissues. Furthermore, TRE demonstrated antioxidant, anti-apoptotic and anti-fibrotic properties. Conclusion: The investigation into the effect of trehalose on a myocardial infarction rat model has yielded promising outcomes, as evidenced by improvements observed through conventional echocardiography, histological analysis, and immunohistochemical analysis. While minor trends were noticed in IVPG and HRV measurements. However, our findings offer valuable insights and demonstrate a correlation between IVPG, HRV, and other traditional markers of echo assessment in the myocardial infarction vs. sham groups. This alignment suggests the potential of IVPG and HRV as additional indicators for future research in this field.

8.
Front Pharmacol ; 14: 1159516, 2023.
Article in English | MEDLINE | ID: mdl-37153767

ABSTRACT

Despite its disadvantages, chemotherapy is still commonly used for the treatment of bladder cancer (BC). Developing natural supplements that can target cancer stem cells (CSCs) which cause drug resistance and distant metastasis is necessary. Chaga mushrooms are popular to have several health-promoting and anti-cancer potentials. Organoid culture can recapitulate tumor heterogeneity, epithelial environment, and genetic and molecular imprints of the original tissues. In the previous study, we generated dog bladder cancer organoids (DBCO) as a novel experimental model of muscle-invasive BCO. Therefore, the present study aimed to examine the anti-tumor potentials of Chaga mushroom extract (Chaga) against DBCO. Four strains of DBCO were used in the present study. Treatment with Chaga inhibited the cell viability of DBCO in a concentration-dependent way. Treatment of DBCO with Chaga has significantly arrested its cell cycle and induced apoptosis. Expression of bladder CSC markers, CD44, C-MYC, SOX2, and YAP1, declined in the Chaga-treated DBCO. Also, Chaga inhibited the phosphorylation of ERK in DBCO. Expression of downstream signals of ERK, C-MYC, and Cyclins (Cyclin-A2, Cyclin-D1, Cyclin-E1, and CDK4) was also inhibited by Chaga in DBCO. Interestingly, the combinational treatment of DBCO with Chaga and anti-cancer drugs, vinblastine, mitoxantrone, or carboplatin, showed a potentiating activity. In vivo, Chaga administration decreased tumor growth and weight of DBCO-derived xenograft in mice with the induction of necrotic lesions. In conclusion, Chaga diminished the cell viability of DBCO by inhibiting proliferation-related signals and stemness conditions as well as by arresting the cell cycle. Collectively, these data suggest the value of Chaga as a promising natural supplement that could potentiate the effect of adjuvant chemotherapy, lower its adverse effects, and thus, limit the recurrence and metastasis of BC.

9.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108673

ABSTRACT

Recently, substantial attention has been paid toward adipose-derived mesenchymal stem cells (AdMSCs) as a potential therapy in tissue engineering and regenerative medicine applications. Rat AdMSCs (r-AdMSCs) are frequently utilized. However, the influence of the adipose depot site on the multilineage differentiation potential of the r-AdMSCs is still ambiguous. Hence, the main objective of this study was to explore the influence of the adipose tissue harvesting location on the ability of r-AdMSCs to express the stem-cell-related markers and pluripotency genes, as well as their differentiation capacity, for the first time. Herein, we have isolated r-AdMSCs from the inguinal, epididymal, peri-renal, and back subcutaneous fats. Cells were compared in terms of their phenotype, immunophenotype, and expression of pluripotency genes using RT-PCR. Additionally, we investigated their potential for multilineage (adipogenic, osteogenic, and chondrogenic) induction using special stains confirmed by the expression of the related genes using RT-qPCR. All cells could positively express stem cell marker CD 90 and CD 105 with no significant in-between differences. However, they did not express the hematopoietic markers as CD 34 and CD 45. All cells could be induced successfully. However, epididymal and inguinal cells presented the highest capacity for adipogenic and osteogenic differentiation (21.36-fold and 11.63-fold for OPN, 29.69-fold and 26.68-fold for BMP2, and 37.67-fold and 22.35-fold for BSP, respectively, in epididymal and inguinal cells (p < 0.0001)). On the contrary, the subcutaneous cells exhibited a superior potential for chondrogenesis over the other sites (8.9-fold for CHM1 and 5.93-fold for ACAN, (p < 0.0001)). In conclusion, the adipose tissue harvesting site could influence the differentiation capacity of the isolated AdMSCs. To enhance the results of their employment in various regenerative cell-based therapies, it is thus vital to take the collection site selection into consideration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Rats , Male , Animals , Adipose Tissue/metabolism , Mesenchymal Stem Cells/metabolism , Subcutaneous Fat , Cell Differentiation , Cells, Cultured
10.
Biomed Pharmacother ; 162: 114651, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37030135

ABSTRACT

Canine malignant mesothelioma (cMM) is a rare and drug-resistant malignant tumor. Due to few patients and experimental models, there have not been enough studies to demonstrate the pathogenesis of the disease and novel effective treatment for cMM. Since cMM resembles human MM (hMM) in histopathological characteristics, it is also considered a promising research model of hMM. Compared with conventional 2-dimensional (2D) culture methods, 3-dimensional (3D) organoid culture can recapitulate the properties of original tumor tissues. However, cMM organoids have never been developed. In the present study, we for the first time generated cMM organoids using the pleural effusion samples. Organoids from individual MM dogs were successfully generated. They exhibited the characteristics of MM and expressed mesothelial cell markers, such as WT-1 and mesothelin. The sensitivity to anti-cancer drugs was different in each strain of cMM organoids. RNA sequencing analysis showed cell adhesion molecule pathways were specifically upregulated in cMM organoids compared with their corresponding 2D cultured cells. Among these genes, the expression level of E-cadherin was drastically higher in the organoids than that in the 2D cells. In conclusion, our established cMM organoids might become a new experimental tool to provide new insights into canine and human MM therapy.


Subject(s)
Antineoplastic Agents , Mesothelioma, Malignant , Humans , Dogs , Animals , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/metabolism , Mesothelioma, Malignant/pathology , Antineoplastic Agents/pharmacology , Cell Culture Techniques/methods , Models, Theoretical , Organoids
11.
Animals (Basel) ; 14(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38200807

ABSTRACT

Quadriceps contracture is an abnormal pathological shortening of the muscle-tendon unit. To improve the prognosis of quadriceps contracture, improvement of its diagnostic method is needed. In this study, we evaluated the diagnostic utility of ultrasound shear wave elastography in a rat model of quadriceps contracture induced by immobilization. Fifty Wistar rats were randomly divided into control and immobilization groups. During up to 4 weeks of joint immobilization, the quadriceps elastic modulus, muscle hardness, creatinine phosphokinase levels, joint range of motion, histopathologic parameters, and levels of fibrosis-associated mRNA expression were measured every week in the immobilization and control groups and compared. In the immobilization group, the elastic modulus gradually but significantly increased (p < 0.05) throughout the immobilization period. However, muscle hardness and serum creatinine phosphokinase levels only increased at 1 and 2 weeks after the start of immobilization, respectively. Muscle atrophy and shortening progressed throughout the immobilization group. Collagen type I and III, α-SMA protein, and mRNA expression of IL-1ß and TGF-ß1 significantly increased (p < 0.05) throughout in the immobilization group. Ultrasound shear wave elastography is the most useful method for clinical assessment of muscle contracture.

12.
Biomed Pharmacother ; 154: 113597, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36030590

ABSTRACT

Like humans, cancer affects companion animals with similar genetic risks and incident rates. To improve treatment strategies for pet cancers, new research models are necessary. Patient-derived 3D organoid culture models are valuable and ensure the development of new effective therapies. In the previous study, we established a 3D organoid-derived 2.5D organoid culture model that recapitulated some characteristics of their parental 3D organoids. In the present study, we aimed to generate a 2.5D organoid culture model directly from cancer-diseased dogs and cats using special 2.5D media. The primary cultured cells in 2.5D media (direct 2.5D organoids) showed better attachment, growth, marker expression, and faster proliferation speed than those cultured in normal Dulbecco's Modified Eagle Medium media. The direct 2.5D organoids showed expression of each specific marker to their original cancer tissues and exhibited tumorigenesis in vivo. Moreover, the direct 2.5D organoids exhibited concentration-dependent responses to anti-cancer drugs, and different sensitivity profiles were shown among the strains. Our data suggest that the direct 2.5D organoid culture model might become a useful tool beyond 2D cell lines to study cancer biology in companion animals and could provide new platforms for screening the anti-cancer drugs.


Subject(s)
Antineoplastic Agents , Cat Diseases , Dog Diseases , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Cat Diseases/drug therapy , Cat Diseases/metabolism , Cats , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dogs , Humans , Neoplasms/drug therapy , Organoids/metabolism , Pets
13.
Biomed Pharmacother ; 151: 113105, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35605292

ABSTRACT

Dog bladder cancer (BC) is mostly muscle-invasive (MI) with poor prognosis, and its pathogenesis is close to human MIBC. Three-dimensional (3D) organoid culture ensures novel knowledge on cancer diseases including BC. Recently, we have established dog BC organoids (BCO) using their urine samples. BCO recapitulated the epithelial structures, characteristics, and drug sensitivity of BC-diseased dogs. However, organoids from dog normal bladder epithelium are not established yet. Therefore, the present study aimed to establish dog normal bladder organoids (NBO) for further understanding the pathogenesis of dog BC and human MIBC. The established NBO underwent various analyzes including cell marker expressions, histopathological structures, cancer-related gene expression patterns, and drug sensitivity. NBO could be produced non-invasively with a continuous culturing and recapitulated the structures and characteristics of the dog's normal bladder mucosal tissues. Different drug sensitivities were observed in each NBO. The analysis of RNA sequencing revealed that several novel genes were changed in NBO compared with BCO. NBO showed a higher expression of p53 and E-cadherin, but a lower expression of MDM2 and Twist1 compared with BCO. These results suggest that NBO could be a promising experimental 3D model for studying the developmental mechanisms of dog BC and human MIBC.


Subject(s)
Organoids , Urinary Bladder Neoplasms , Animals , Dogs , Models, Theoretical , Organoids/metabolism , Organoids/pathology , Sequence Analysis, RNA , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology
14.
Anat Rec (Hoboken) ; 305(12): 3410-3421, 2022 12.
Article in English | MEDLINE | ID: mdl-35332993

ABSTRACT

In both veterinary and human health, regenerative medicine offers a promising cure for various disorders. One of the rate-limiting challenges in regenerative medicine is the considerable time and technique required to expand and grow cells in culture. Therefore, the stromal vascular fraction (SVF) shows a significant promise for various cell therapy approaches. The present study aimed to define and investigate the optimal harvest site of freshly isolated SVF cells from various adipose tissue (AT) depot sites in the female Sprague-Dawley (S.D.) rat. First, hematoxylin and eosin (H&E) were used to analyze the morphological variations in AT samples from peri-ovarian, peri-renal, mesenteric, and omental sites. The presence of putative stromal cells positive CD34 was detected using immunohistochemistry. Then, the isolated SVF cells were examined for cell viability and cellular yield differences. Finally, the expression of mesenchymal stem cells and hematopoietic markers in the SVF cells subpopulation was studied using flow cytometry. The pluripotent gene expression profile was also evaluated. CD34 staining of the omental AT was substantially higher than those of other anatomical sites. Despite having the least quantity of fat, omental AT has the highest SVF cell fraction and viable cells. Along with CD90 and CD44 higher expression, Oct4, Sox2, and Rex-1 genes levels were higher in SVF cells isolated from the omental AT. To conclude, omental fat is the best candidate for SVF cell isolation in female S.D. rats with the highest SVF cell fraction with higher MSCs phenotypes and pluripotency gene expression.


Subject(s)
Mesenchymal Stem Cells , Stromal Vascular Fraction , Rats , Female , Humans , Animals , Rats, Sprague-Dawley , Adipose Tissue , Stromal Cells , Cells, Cultured
15.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35216087

ABSTRACT

Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.


Subject(s)
Nuclear Transfer Techniques , Animals , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Cloning, Organism/methods , DNA Methylation/genetics , DNA Methylation/physiology , Embryo, Mammalian/physiology , Embryonic Development/genetics , Embryonic Development/physiology , Epigenesis, Genetic/genetics , Humans , Oocytes/physiology
16.
Animals (Basel) ; 11(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34679792

ABSTRACT

In patients with solid tumors, circulating tumor cells (CTCs) spread in their blood and function as a seed for metastases. However, the study of CTCs has been limited by their rarity, low frequency, and heterogeneity. The efficient collection of CTCs will contribute to further research of metastatic cancers. Apheresis is a process in which the whole blood of an individual is passed through a machine that isolates a particular constituent and returns the remainder to the circulation. In the present study, we investigated the safety and feasibility of apheresis to separate peripheral blood monocytes (PBMCs), whose density is closely similar to that of CTCs, and to capture intravenously administered human breast cancer cells, MCF7s, from the dogs. No life-threatening events were observed in dogs during the apheresis process. The changes in the hemogram were transient and recovered gradually within a few days after apheresis. During apheresis, 50 mL of PBMCs could be collected from each dog. Notably, a thrombus was formed along the circuit wall during apheresis, which decreased the blood collection pressure. MCF7 cells were successfully captured by the apheresis machine. The captured cells were regrown in vitro and characterized compared with the original cells. In conclusion, apheresis could be safely performed in dogs to isolate CTCs with precautions to maintain hemodynamic stability.

17.
Int J Mol Sci ; 22(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34639103

ABSTRACT

Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault's rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.


Subject(s)
COVID-19/virology , Chiroptera/virology , Organoids/virology , Orthoreovirus/physiology , Reoviridae Infections/virology , SARS-CoV-2/physiology , Animals , COVID-19/veterinary , Cell Culture Techniques , Cells, Cultured , Chiroptera/physiology , Humans , Intestines/cytology , Intestines/virology , Organoids/cytology , Reoviridae Infections/veterinary
18.
Cells ; 10(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34572123

ABSTRACT

Mesenchymal stem cells (MSCs) derived from adipose tissue are evolved into various cell-based regenerative approaches. Adipose-derived stem cells (ASCs) isolated from rats are commonly used in tissue engineering studies. Still, there is a gap in knowledge about how the harvest locations influence and guide cell differentiation. This study aims to investigate how the harvesting site affects stem-cell-specific surface markers expression, pluripotency, and differentiation potential of ASCs in female Sprague Dawley rats. ASCs were extracted from the adipose tissue of the peri-ovarian, peri-renal, and mesenteric depots and were compared in terms of cell morphology. MSCs phenotype was validated by cell surfaces markers using flow cytometry. Moreover, pluripotent gene expression of Oct4, Nanog, Sox2, Rex-1, and Tert was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). ASCs multipotency was evaluated by specific histological stains, and the results were confirmed by quantitative polymerase chain reaction (RT-qPCR) expression analysis of specific genes. There was a non-significant difference detected in the cell morphology and immunophenotype between different harvesting sites. ASCs from multiple locations were significantly varied in their capacity to differentiate into adipocytes, osteoblastic cells, and chondrocytes. To conclude, depot selection is a critical element that should be considered when using ASCs in tissue-specific cell-based regenerative therapies research.


Subject(s)
Adipocytes/cytology , Cell Differentiation , Chondrocytes/cytology , Mesenchymal Stem Cells/cytology , Organ Specificity , Osteoblasts/cytology , Adipocytes/metabolism , Animals , Cell Proliferation , Cells, Cultured , Chondrocytes/metabolism , Female , Immunophenotyping , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Rats , Rats, Sprague-Dawley
19.
Biomed Pharmacother ; 142: 112043, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411919

ABSTRACT

Despite its adverse effects, chemotherapy is generally used for the treatment of colorectal cancer (CRC). Development of supplement preparations targeting cancer stem cells (CSCs) that cause distant metastasis and drug resistance is required. Although curcumin is known to have anti-tumor, hepatoprotective, and hypoglycemic-like actions, its low water solubility, oral absorption, and bioavailability impede its therapeutic uses. Patient-derived organoid cultures can recapitulate heterogeneity, epithelial structures, and molecular imprints of their parental tissues. In the present study, anti-carcinogenic properties of amorphous curcumin (AC), a compound with improved solubility and bioavailability, were evaluated against human CRC organoids. Treatment with AC inhibited the cell viability of CRC organoids in a concentration-dependent manner. AC arrested the cell cycle of CRC organoids and induced apoptosis. AC inhibited phosphorylation of ERK. Expression of downstream signals of ERK, namely c-MYC and cyclin-D1, were inhibited. Expressions of CSC markers, CD44, LGR5, and CD133, were declined in the AC-treated CRC organoids. The combinational treatment of CRC organoids with AC and anti-cancer drugs, oxaliplatin, 5-FU, or irinotecan showed a synergistic activity. In vivo, AC decreased the tumor growth of CRC organoids in mice with the induction of necrotic lesions. In conclusion, AC diminished the cell viability of CRC organoids through the inhibition of proliferation-related signals and CSC marker expression in addition to arresting the cell cycle. Collectively, these data suggest the value of AC as a promising supplement that could be used in combination with anti-cancer drugs to prevent the recurrence and metastasis of CRC.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Curcumin/pharmacology , Organoids/drug effects , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinogenesis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/pathology , Curcumin/therapeutic use , Drug Synergism , Fluorouracil/pharmacology , Humans , Irinotecan/pharmacology , Male , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Organoids/pathology , Oxaliplatin/pharmacology
20.
Cancer Biol Ther ; 22(5-6): 357-371, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34034619

ABSTRACT

Bladder cancer (BC), a main neoplasm of urinary tract, is usually inoperable and unresponsive to chemotherapy. As a novel experimental model for muscle-invasive BC, we previously established a culture method of dog BC organoids. In the present study, the detailed in vitro and in vivo anti-tumor effects of trametinib were investigated by using this model. In each BC organoid strain, epidermal growth factor receptor (EGFR)/ERK signaling was upregulated compared with normal bladder cells. Trametinib even at a low concentration inhibited the cell viability of BC organoids and the activation of ERK through decreasing expression of c-Myc, ELK1, SIK1, and PLA2G4A. Trametinib arrested cell cycle of BC with few apoptosis. Dual treatment of BC organoids with trametinib and YAP inhibitor, verteporfin extremely inhibited the cell viability with apoptosis induction. Moreover, trametinib induced basal to luminal differentiation of BC organoids by upregulating luminal markers and downregulating basal ones. In vivo, trametinib decreased the tumor growth of BC organoids in mice and the xenograft-derived organoids from trametinib-administered mice showed enhanced sensitivity to carboplatin due to MSH2 upregulation. Our data suggested a new strategy of trametinib-YAP inhibitor or trametinib-carboplatin combination as a promising treatment of BC.


Subject(s)
Urinary Bladder Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Dogs , Mice , Organoids , Pyridones/pharmacology , Pyrimidinones/pharmacology , Urinary Bladder Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...