Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256007

ABSTRACT

Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Radioisotopes , Humans , Male , Half-Life , Nuclear Medicine , Prostatic Neoplasms/drug therapy , Radioisotopes/therapeutic use
2.
Sci Rep ; 13(1): 13943, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626086

ABSTRACT

Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvß3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvß3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.


Subject(s)
Lung Neoplasms , Melanoma, Experimental , Neoplasms, Second Primary , Animals , Mice , Amino Acid Transport Systems , Disease Models, Animal , Integrin alphaVbeta3 , Large Neutral Amino Acid-Transporter 1/genetics , Lung Neoplasms/genetics , Melanoma, Experimental/genetics
3.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240044

ABSTRACT

Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.


Subject(s)
Fibroblasts , Polyethylene Glycols , Humans , Animals , Mice , HEK293 Cells , Piperazine/pharmacology , Polyethylene Glycols/pharmacology , Positron Emission Tomography Computed Tomography , Gallium Radioisotopes
4.
PET Clin ; 18(3): 397-408, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36997365

ABSTRACT

Fibroblast activation protein (FAP) was first reported in 1986. However, FAP is not expressed in normal fibroblasts, normal or malignant epithelial cells, or the stroma of benign epithelial tumors. FAP is a cell membrane-bound serine peptidase overexpressed on the surface of cancer-associated fibroblasts and, as such, is a novel target for molecular imaging of several tumors. FAP inhibitors (FAPI) are potential theranostic molecular probes for various cancers. A tumor model expressing FAP was used to verify or confirm the usefulness of FAPI experimentally.


Subject(s)
Membrane Proteins , Neoplasms , Humans , Membrane Proteins/metabolism , Precision Medicine , Serine Endopeptidases/metabolism , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology
5.
Eur J Nucl Med Mol Imaging ; 50(3): 849-858, 2023 02.
Article in English | MEDLINE | ID: mdl-36344651

ABSTRACT

PURPOSE: Targeted α-therapy (TAT) for prostate-specific membrane antigen (PSMA) is a promising treatment for metastatic castration-resistant prostate cancer (CRPC). Astatine is an α-emitter (half-life=7.2 h) that can be produced by a 30-MeV cyclotron. This study evaluated the treatment effect of 211At-labeled PSMA compounds in mouse xenograft models. METHODS: Tumor xenograft models were established by subcutaneous transplantation of human prostate cancer cells (LNCaP) in NOD/SCID mouse. [211At]PSMA1, [211At]PSMA5, or [211At]PSMA6 was administered to LNCaP xenograft mice to evaluate biodistribution at 3 and 24 h. The treatment effect was evaluated by administering [211At]PSMA1 (0.40 ± 0.07 MBq), [211At]PSMA5 (0.39 ± 0.03 MBq), or saline. Histopathological evaluation was performed for the at-risk organs at 3 and 6 weeks after administration. RESULTS: [211At]PSMA5 resulted in higher tumor retention compared to [211At]PSMA1 and [211At]PSMA6 (30.6 ± 17.8, 12.4 ± 4.8, and 19.1 ± 4.5 %ID/g at 3 h versus 40.7 ± 2.6, 8.7 ± 3.5, and 18.1 ± 2.2%ID/g at 24 h, respectively), whereas kidney excretion was superior in [211At]PSMA1 compared to [211At]PSMA5 and [211At]PSMA6. An excellent treatment effect on tumor growth was observed after [211At]PSMA5 administration. [211At]PSMA1 also showed a substantial treatment effect; however, the tumor size was relatively larger compared to that with [211At]PSMA5. In the histopathological evaluation, regenerated tubules were detected in the kidneys at 3 and 6 weeks after the administration of [211At]PSMA5. CONCLUSION: TAT using [211At]PSMA5 resulted in excellent tumor growth suppression with minimal side effects in the normal organs. [211At]PSMA5 should be considered a new possible TAT for metastatic CRPC, and translational prospective trials are warranted.


Subject(s)
Astatine , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Animals , Mice , Astatine/therapeutic use , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Tissue Distribution , Prospective Studies , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms/pathology , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Cell Line, Tumor , Radiopharmaceuticals/therapeutic use
6.
Pharmaceutics ; 14(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36559199

ABSTRACT

Alpha-particle radiotherapy has gained considerable attention owing to its potent anti-cancer effect. 211At, with a relatively short half-life of 7.2 h, emits an alpha particle within a few cell diameters with high kinetic energy, which damages cancer cells with high biological effectiveness. In this study, we investigated the intravenous injection of 211At-labeled gold nanoparticles (AuNPs) for targeted alpha-particle therapy (TAT). Different kinds of surface-modified gold nanoparticles can be labeled with 211At in high radiochemical yield in 5 min, and no purification is necessary. The in vivo biodistribution results showed the accumulation of 5 nm 211At-AuNPs@mPEG at 2.25% injection dose per gram (% ID/g) in tumors within 3 h via the enhanced permeability and retention (EPR) effect. Additionally, we observed a long retention time in tumor tissues within 24 h. This is the first study to demonstrate the anti-tumor efficacy of 5 nm 211At-AuNPs@mPEG that can significantly suppress tumor growth in a pancreatic cancer model via intravenous administration. AuNPs are satisfactory carriers for 211At delivery, due to simple and efficient synthesis processes and high stability. The intravenous administration of 5 nm 211At-AuNPs@mPEG has a significant anti-tumor effect. This study provides a new framework for designing nanoparticles suitable for targeted alpha-particle therapy via intravenous injection.

7.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555151

ABSTRACT

This study confirmed the effect of sodium/iodine symporter (NIS) expression on existing drugs by in vitro and in vivo tests using cultured cell lines. The tumor growth inhibitory effect of sodium astatide ([211At]NaAt) was evaluated by in vitro and in vivo tests using human thyroid cancer cells (K1, K1/NIS and K1/NIS-DOX). NIS expression in cancer cells was controlled using the Tet-On system. [131I]NaI was used as control existing drug. From the results of the in vitro studies, the mechanism of [211At]NaAt uptake into thyroid cancer cells is mediated by NIS, analogous to [131I]NaI, and the cellular uptake rate correlates with the expression level of NIS. [211At]NaAt's ability to inhibit colony formation was more than 10 times that of [131I]NaI per becquerel (Bq), and [211At]NaAt's DNA double-strand breaking (DSB) induction was more than ten times that of [131I]NaI per Bq, and [211At]NaAt was more than three times more cytotoxic than [131I]NaI (at 1000 kBq each). In vivo studies also showed that the tumor growth inhibitory effect of [211At]NaAt depended on NIS expression and was more than six times that of [131I]NaI per Bq.


Subject(s)
Iodine Compounds , Symporters , Thyroid Neoplasms , Humans , Symporters/genetics , Symporters/metabolism , Iodine Radioisotopes/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
8.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555608

ABSTRACT

Recent introduction of alpha-emitting radionuclides in targeted radionuclide therapy has stimulated the development of new radiopharmaceuticals. Preclinical evaluation using an animal experiment with an implanted tumor model is frequently used to examine the efficiency of the treatment method and to predict the treatment response before clinical trials. Here, we propose a mathematical model for evaluation of the tumor response in an implanted tumor model and apply it to the data obtained from the previous experiment of 211At treatment in a thyroid cancer mouse model. The proposed model is based on the set of differential equations, describing the kinetics of radiopharmaceuticals, the tumor growth, and the treatment response. First, the tumor growth rate was estimated from the control data without injection of 211At. The kinetic behavior of the injected radionuclide was used to estimate the radiation dose profile to the target tumor, which can suppress the tumor growth in a dose-dependent manner. An additional two factors, including the time delay for the reduction of tumor volume and the impaired recovery of tumor regrowth after the treatment, were needed to simulate the temporal changes of tumor size after treatment. Finally, the parameters obtained from the simulated tumor growth curve were able to predict the tumor response in other experimental settings. The model can provide valuable information for planning the administration dose of radiopharmaceuticals in clinical trials, especially to determine the starting dose at which efficacy can be expected with a sufficient safety margin.


Subject(s)
Neoplasms , Radiopharmaceuticals , Mice , Animals , Radiopharmaceuticals/therapeutic use , Neoplasms/radiotherapy , Neoplasms/drug therapy , Radioisotopes/therapeutic use , Models, Theoretical
9.
Chembiochem ; 23(24): e202200556, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36285893

ABSTRACT

Some types of dioxetanes are called chemiluminophores because they produce luminescence light without the use of enzymes. Here, we designed and synthesized a novel carboxy group-containing chemiluminophore derivative, which enabled the simple introduction of such a chemiluminophore to the molecule of interest. Furthermore, we demonstrate that the in vivo imaging system (IVIS imaging system) can recognize tagged chemicals, indicating that such a chemiluminophore could be employed as a tracer molecule for biological studies.


Subject(s)
Heterocyclic Compounds, 1-Ring , Heterocyclic Compounds , Heterocyclic Compounds/chemistry , Luminescent Measurements , Indicators and Reagents , Luminescence
10.
Int J Mol Sci ; 23(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36012698

ABSTRACT

Astatine (211At) is an alpha-emitter with a better treatment efficacy against differentiated thyroid cancer compared with iodine (131I), a conventional beta-emitter. However, its therapeutic comparison has not been fully evaluated. In this study, we compared the therapeutic effect between [211At]NaAt and [131I]NaI. In vitro analysis of a double-stranded DNA break (DSB) and colony formation assay were performed using K1-NIS cells. The therapeutic effect was compared using K1-NIS xenograft mice administered with [211At]NaAt (0.4 MBq (n = 7), 0.8 MBq (n = 9), and 1.2 MBq (n = 4)), and [131I]NaI (1 MBq (n = 4), 3 MBq (n = 4), and 8 MBq (n = 4)). The [211At]NaAt induced higher numbers of DSBs and had a more reduced colony formation than [131I]NaI. In K1-NIS mice, dose-dependent therapeutic effects were observed in both [211At]NaAt and [131I]NaI. In [211At]NaAt, a stronger tumour-growth suppression was observed, while tumour regrowth was not observed until 18, 25, and 46 days after injection of 0.4, 0.8, and 1.2 MBq of [211At]NaAt, respectively. While in [131I]NaI, this was observed within 12 days after injection (1, 3, and 8 MBq). The superior therapeutic effect of [211At]NaAt suggests the promising clinical applicability of targeted alpha therapy using [211At]NaAt in patients with differentiated thyroid cancer refractory to standard [131I]NaI treatment.


Subject(s)
Adenocarcinoma , Astatine , Thyroid Neoplasms , Adenocarcinoma/drug therapy , Animals , Astatine/therapeutic use , Humans , Iodine Radioisotopes/therapeutic use , Mice , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Transplantation, Heterologous
11.
Eur J Nucl Med Mol Imaging ; 49(3): 871-880, 2022 02.
Article in English | MEDLINE | ID: mdl-34537893

ABSTRACT

PURPOSE: Fibroblast activation protein (FAP), which has high expression in cancer-associated fibroblasts of epithelial cancers, can be used as a theranostic target. Our previous study used 64Cu and 225Ac-labelled FAP inhibitors (FAPI-04) for a FAP-expressing pancreatic cancer xenograft imaging and therapy. However, the optimal therapeutic radionuclide for FAPI needs to be investigated further. In this study, we evaluated the therapeutic effects of beta-emitter (177Lu)-labelled FAPI-46 and alpha-emitter (225Ac)-labelled FAPI-46 in pancreatic cancer models. METHODS: PET scans (1 h post injection) were acquired in PANC-1 xenograft mice (n = 9) after the administration of [18F]FAPI-74 (12.4 ± 1.7 MBq) for the companion imaging. The biodistribution of [177Lu]FAPI-46 and [225Ac]FAPI-46 were evaluated in the xenograft model (total n = 12). For the determination of treatment effects, [177Lu]FAPI-46 and [225Ac]FAPI-46 were injected into PANC-1 xenograft mice at different doses: 3 MBq (n = 6), 10 MBq (n = 6), 30 MBq (n = 6), control (n = 4) for [177Lu]FAPI-46, and 3 kBq (n = 3), 10 kBq (n = 2), 30 kBq (n = 6), control (n = 7) for [225Ac]FAPI-46. Tumour sizes and body weights were followed. RESULTS: [18F]FAPI-74 showed rapid clearance by the kidneys and high accumulation in the tumour and intestine 1 h after administration. [177Lu]FAPI-46 and [225Ac]FAPI-46 also showed rapid clearance by the kidneys and relatively high accumulation in the tumour at 3 h. Both [177Lu]FAPI-46 and [225Ac]FAPI-46 showed tumour-suppressive effects, with a mild decrease in body weight. The treatment effects of [177Lu]FAPI-46 were relatively slow but lasted longer than those of [225Ac]FAPI-46. CONCLUSION: This study suggested the possible application of FAPI radioligand therapy in FAP-expressing pancreatic cancer. Further evaluation is necessary to find the best radionuclide with shorter half-life, as well as the combination with therapies targeting tumour cells directly.


Subject(s)
Pancreatic Neoplasms , Animals , Fibroblasts/pathology , Humans , Mice , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Quinolines , Radiopharmaceuticals , Tissue Distribution
12.
Exp Cell Res ; 410(2): 112969, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34883111

ABSTRACT

MEL1 (MDS1/EVI1-like gene 1/PRDM16), a zinc finger protein, is located near the chromosomal breakpoint at 1p36 in human acute myeloid leukemia (AML) cells with the t (1; 3) (p36; q21) translocation. Mel1/Prdm16 is not only a causative gene of leukemia, but also has multiple regulatory functions, such as the regulation of fat metabolism. To investigate the function of Mel1/Prdm16, we generated Mel1/Prdm16-deficient mice, but homozygous deficiency (Mel1/Prdm16-/-) was embryonic lethal at E 11.5. Heterozygous mice showed abnormal cartilage and bone formation in the postnatal skull and long bones, suggesting that Mel1/Prdm16 expression plays an important role in bone development. In osteoblast and chondrocyte cell lines, Mel1/Prdm16 promotes the differentiation of chondrocytes and regulates the differentiation of osteoblasts. Transient repression of the master regulator Runx2 is required for chondrocyte differentiation at an early stage of differentiation. However, in Mel1/Prdm16-suppressed ATDC5 cells, the initial suppression of Runx2 was lacking and its expression was upregulated at the beginning of differentiation, suggesting that chondrogenic differentiation is suppressed in Mel1/Prdm16+/- mesenchymal progenitor cells because Runx2 expression is upregulated during the early stage of differentiation. Thus, the Mel1/Prdm16 gene may be involved in the early repression of Runx2 expression during osteochondral differentiation and promote chondrogenic differentiation.


Subject(s)
Bone and Bones/anatomy & histology , Bone and Bones/cytology , Cell Differentiation , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Bone Morphogenetic Protein 2/metabolism , Cartilage/pathology , Core Binding Factor Alpha 1 Subunit/metabolism , DNA-Binding Proteins/deficiency , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Models, Biological , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis , Signal Transduction , Transcription Factors/deficiency
13.
Ann Nucl Med ; 35(6): 702-718, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33871803

ABSTRACT

OBJECTIVE: Astatine (211At) is a promising alpha emitter as an alternative to iodine (131I). We are preparing the first-in-human (FIH) clinical trial of targeted alpha therapy for differentiated thyroid cancer in consultation with Pharmaceuticals and Medical Devices Agency. Here, we performed an extended single-dose toxicity examination under a reliability standard, as a preclinical safety assessment of [211At]NaAt to determine the FIH dose. METHODS: [211At]NaAt solution was injected into normal 6-week-old mice (male (n = 50) and female (n = 50), body weight: male 33.2 ± 1.7 g, female 27.3 ± 1.5 g), which were then divided into four groups: 5 MBq/kg (n = 20), 20 MBq/kg (n = 20), 50 MBq/kg (n = 30), saline control (n = 30). The mice were followed up for 5 days (primary evaluation point for acute toxicity: n = 80) or 14 days (n = 20: evaluation point for recovery) to monitor general condition and body weight change. At the end of the observation period, necropsy, blood test, organ weight measurement, and histopathological examination were performed. For body weight, blood test, and organ weight, statistical analyses were performed to compare data between the control and injected groups. RESULTS: No abnormal findings were observed in the general condition of mice. In the 50 MBq/kg group, males (days 3 and 5) showed a significant decrease in body weight compared with the control. However, necropsy did not differ significantly beyond the range of spontaneous lesions. In the blood test, males (50 MBq/kg) and females (50 MBq/kg) showed a decrease in white blood cell and platelet counts on day 5, and recovery on day 14. In the testis, a considerable weight decrease was observed on day 14 (50 MBq/kg), and multinucleated giant cells were observed in all mice, indicating a significant change related to the administration of [211At]NaAt. CONCLUSIONS: In the extended single-dose toxicity study of [211At]NaAt, administration of high doses resulted in weight loss, transient bone marrow suppression, and pathological changes in the testis, which require consideration in the FIH clinical trial.


Subject(s)
Thyroid Neoplasms , Adenocarcinoma , Animals , Mice , Reproducibility of Results
14.
Cancer Sci ; 112(3): 1132-1140, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33277750

ABSTRACT

α-Methyl-l-tyrosine (AMT) has a high affinity for the cancer-specific l-type amino acid transporter 1 (LAT1). Therefore, we established an anti-cancer therapy, with 211 At-labeled α-methyl-l-tyrosine (211 At-AAMT) as a carrier of 211 At into tumors. 211 At-AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double-stranded breaks in vitro. We evaluated the accumulation of 211 At-AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211 At-AAMT inhibited tumor growth in the PANC-1 tumor model and 1 MBq/mouse 211 At-AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211 At would be useful for anti-cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.


Subject(s)
Alpha Particles/therapeutic use , Astatine/administration & dosage , Drug Carriers/pharmacology , Large Neutral Amino Acid-Transporter 1/metabolism , Neoplasms/radiotherapy , alpha-Methyltyrosine/pharmacology , Animals , Cell Line, Tumor , DNA Breaks, Double-Stranded/radiation effects , Disease Models, Animal , Feasibility Studies , Female , HEK293 Cells , Humans , Male , Mice , Neoplasms/pathology , Xenograft Model Antitumor Assays
15.
Med Phys ; 47(11): 5739-5748, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32916769

ABSTRACT

PURPOSE: Astatine-211 (At-211) is a promising alpha emitter for radionuclide therapy. High-resolution in vivo imaging of At-211 in small animals is needed for the development of At-211 radiopharmaceuticals. For this purpose, we developed a low-energy x-ray camera using a thin YAlO3 :Ce (YAP(Ce)) plate to image the low-energy x rays (73-87 keV) from the daughter radionuclide of At-211 (Po-211). METHOD: We optically coupled a 38 × 38 × 1-mm YAP (Ce) plate to a position-sensitive photomultiplier (PSPMT) to develop an imaging detector. A pinhole or a parallel hole collimator was attached to the imaging detector, and the performance was measured for 60-keV gamma photons. With the developed x-ray camera, we carried out imaging of a mouse that had been administered At-211-NaAt. RESULTS: The intrinsic spatial resolution of the YAP (Ce) x-ray camera was approximately 1.2 mm FWHM, and the energy resolution was 22% FWHM. With a 5-mm-thick parallel hole collimator, the spatial resolution was 3.8 mm FWHM with a sensitivity of 8 × 10-4 at 10 mm, which is a typical distance from the surface of the collimator to a subject in mouse imaging. Using a 1-mm diameter pinhole collimator, the spatial resolution was 1.8 mm FWHM with a sensitivity of 3.5 × 10-4 at 10 mm from the collimator. In the mouse images measured by the developed x-ray camera, we could clearly observe that the At-211 accumulated in the thyroid gland and the stomach of the mouse. CONCLUSION: We concluded that the YAP (Ce) x-ray camera is useful for in vivo imaging of At-211.


Subject(s)
Gamma Cameras , Animals , Astatine , Mice , Phantoms, Imaging , Radiography , X-Rays
16.
Oncotarget ; 11(15): 1388-1398, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32341757

ABSTRACT

Phenylalanine derivatives, which target tumors especially through L-type amino acid transporter-1 (LAT1), have elicited considerable attention. In this study, we evaluated the treatment effect of phenylalanine labeled with the alpha emitter astatine (211At-PA) in tumor bearing mice. The C6 glioma, U-87MG, and GL261 cell lines were subjected to a cellular 211At-PA uptake analysis that included an evaluation of the uptake inhibition by the system L amino acid transporter inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). BCH significantly inhibited para-211At-PA uptake in C6 glioma (12.2 ± 0.8%), U-87MG (27.6 ± 1.1%), and GL261 (12.6 ± 2.0%) cells compared to baseline, suggesting an uptake contribution by system L amino acid transporters. Subsequently, xenograft and allograft models were prepared by subcutaneously injecting C6 glioma (n = 12) or GL-261 cells (n = 12), respectively. C6 glioma mice received three 211At-PA doses (0.1, 0.5, or 1 MBq, n = 3/dose), while GL261 mice received one high dose (1 MBq, n = 7). 211At-PA exhibited a tumor growth suppression effect in C6 glioma models in a dose-dependent manner as well as in GL-261 models. This phenylalanine derivative labeled with astatine may be applicable as an alpha therapy that specifically targets system L amino acid transporters.

17.
Transl Oncol ; 13(4): 100757, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32220762

ABSTRACT

We recently reported the dose-dependent therapeutic effect of 211At-NaAt in differentiated thyroid cancer xenograft models. In the present study, we evaluated the radiation-induced toxicity of 211At-NaAt using detailed hematological, biochemical, and histological analyses. Biodistribution of 211At-NaAt was measured in normal ICR mice (n = 12), absorbed doses in the major organs were calculated. Groups of ICR mice (n = 60) were injected with 0.1 MBq or 1 MBq of 211At-NaAt, using saline as the control group (n = 30). Body weight and food intake were followed up for 60 days. Blood cell counts and serum level of biochemical parameters were measured 3, 7, 15, 29, 60 days after injection. Histological analyses of the major organs with hematoxylin and eosin staining were performed. Biodistribution study revealed a high-absorbed dose in the thyroid gland, stomach, bladder, heart, lungs, spleen, kidneys, and testis. The 0.1 MBq group showed no abnormalities. The 1 MBq group showed decreased body weight and food intake. Histological analysis showed atrophy and fibrosis in the thyroid gland, a transient hypospermatogenesis in the testis on day 29 was found in one mouse. Hematological toxicity was mild and transient. The total cholesterol, albumin, and total protein increased with no signs of recovery, which was considered to be caused by hypothyroidism. High-dose administration of 211At-NaAt showed transient toxicity in the white blood cells and testis without severe hematological or renal toxicity, suggesting its tolerable safety as targeted alpha-therapy for differentiated thyroid cancer in the 1 MBq group.

18.
J Nucl Med ; 61(4): 563-569, 2020 04.
Article in English | MEDLINE | ID: mdl-31586001

ABSTRACT

Fibroblast activation protein (FAP), which promotes tumor growth and progression, is overexpressed in cancer-associated fibroblasts of many human epithelial cancers. Because of its low expression in normal organs, FAP is an excellent target for theranostics. In this study, we used radionuclides with relatively long half-lives, 64Cu (half-life, 12.7 h) and 225Ac (half-life, 10 d), to label FAP inhibitors (FAPIs) in mice with human pancreatic cancer xenografts. Methods: Male nude mice (body weight, 22.5 ± 1.2 g) were subcutaneously injected with human pancreatic cancer cells (PANC-1, n = 12; MIA PaCa-2, n = 8). Tumor xenograft mice were investigated after the intravenous injection of 64Cu-FAPI-04 (7.21 ± 0.46 MBq) by dynamic and delayed PET scans (2.5 h after injection). Static scans 1 h after the injection of 68Ga-FAPI-04 (3.6 ± 1.4 MBq) were also acquired for comparisons using the same cohort of mice (n = 8). Immunohistochemical staining was performed to confirm FAP expression in tumor xenografts using an FAP-α-antibody. For radioligand therapy, 225Ac-FAPI-04 (34 kBq) was injected into PANC-1 xenograft mice (n = 6). Tumor size was monitored and compared with that of control mice (n = 6). Results: Dynamic imaging of 64Cu-FAPI-04 showed rapid clearance through the kidneys and slow washout from tumors. Delayed PET imaging of 64Cu-FAPI-04 showed mild uptake in tumors and relatively high uptake in the liver and intestine. Accumulation levels in the tumor or normal organs were significantly higher for 64Cu-FAPI-04 than for 68Ga-FAPI-04, except in the heart, and excretion in the urine was higher for 68Ga-FAPI-04 than for 64Cu-FAPI-04. Immunohistochemical staining revealed abundant FAP expression in the stroma of xenografts. 225Ac-FAPI-04 injection showed significant tumor growth suppression in the PANC-1 xenograft mice, compared with the control mice, without a significant change in body weight. Conclusion: This proof-of-concept study showed that 64Cu-FAPI-04 and 225Ac-FAPI-04 could be used in theranostics for the treatment of FAP-expressing pancreatic cancer. α-therapy targeting FAP in the cancer stroma is effective and will contribute to the development of a new treatment strategy.


Subject(s)
Actinium , Cell Transformation, Neoplastic , Copper Radioisotopes , Gelatinases/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/metabolism , Animals , Cell Line, Tumor , Endopeptidases , Humans , Isotope Labeling , Male , Mice , Mice, Nude , Molecular Targeted Therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
19.
J Nucl Med ; 60(9): 1301-1307, 2019 09.
Article in English | MEDLINE | ID: mdl-30796173

ABSTRACT

211At is an α-emitter that has similar chemical properties to iodine and is used in targeted α-therapy. In the present study, we added ascorbic acid (AA) to 211At solution to increase the radiochemical purity of astatide and evaluated its efficacy against differentiated thyroid cancer, which is characterized by the expression of sodium/iodide symporter (NIS). Methods: Crude 211At solution (AA(-)) and 211At solution treated with AA (AA(+)) were prepared. Uptake by the thyroid was compared between the 2 solutions in normal male Wistar rats (n = 6). Cellular uptake in K1-NIS cells was analyzed under the AA(+) and AA(-) conditions. AA(+) was injected at 3 doses into K1-NIS xenograft mice: 1 MBq (n = 6), 0.4 MBq (n = 6), and 0.1 MBq (n = 6), and vehicle was injected into control mice (n = 6). The treatment effects were compared among the 4 groups. Results: Uptake by the thyroid was significantly enhanced in rats injected with the AA(+) as compared with those injected with AA(-). Cellular uptake analysis showed significantly increased uptake of 211At by the K1-NIS cells under the AA(+) condition as compared with the AA(-) condition. In the mouse xenograft model, the K1-NIS tumors showed significant accumulation of 211At at 3 and 24 h after administration (22.5 ± 10.4 and 12.9 ± 6.8 percentage injected dose, respectively). Tumor growth was immediately inhibited in a dose-dependent manner after administration of 211At. In the survival analysis, the 211At groups (0.1, 0.4, and 1 MBq) showed significantly better survival than the control group. Conclusion: Uptake of 211At was enhanced in differentiated thyroid cancer cells as well as the normal thyroid using 211At solution treated with AA. The method also showed dose-dependent efficacy against the K1-NIS xenografts, suggesting its potential applicability to targeted α-therapy.


Subject(s)
Alpha Particles/therapeutic use , Ascorbic Acid/administration & dosage , Astatine/pharmacokinetics , Symporters/metabolism , Thyroid Neoplasms/radiotherapy , Animals , Ascorbic Acid/chemistry , Biological Transport , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred ICR , Mice, SCID , Neoplasm Transplantation , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Thyroid Cancer, Papillary/radiotherapy
20.
Sci Rep ; 8(1): 13741, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214063

ABSTRACT

G protein-coupled receptor 56 (GPR56) is highly expressed in acute myeloid leukemia (AML) cells with high EVI1 expression (EVI1high AML). Because GPR56 is a transcriptional target of EVI1 and silencing of GPR56 expression induces apoptosis, we developed a novel drug to suppress GPR56 expression in EVI1high AML cells. For this purpose, we generated pyrrole-imidazole (PI) polyamides specific to GPR56 (PIP/56-1 or PIP/56-2) as nuclease-resistant novel compounds that interfere with the binding of EVI1 to the GPR56 promoter in a sequence-specific manner. Treatment of EVI1high AML cell lines (UCSD/AML1 and Kasumi-3) with PIP/56-1 or PIP/56-2 effectively suppressed GPR56 expression by inhibiting binding of EVI1 to its promoter, leading to suppression of cell growth with increased rates of apoptosis. Moreover, intravenous administration of PIP/56-1 into immunodeficient Balb/c-RJ mice subcutaneously transplanted with UCSD/AML1 cells significantly inhibited tumor growth and extended survival. Furthermore, organ infiltration by leukemia cells in immunodeficient Balb/c-RJ mice, which were intravenously transplanted using UCSD/AML1 cells, was successfully inhibited by PIP/56-1 treatment with no apparent effects on murine hematopoietic cells. In addition, PIP treatment did not inhibit colony formation of human CD34+ progenitor cells. Thus, PI polyamide targeting of GPR56 using our compound is promising, useful, and safe for the treatment of EVI1high AML.


Subject(s)
Cell Proliferation/drug effects , Leukemia, Myeloid, Acute/drug therapy , MDS1 and EVI1 Complex Locus Protein/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Cell Line, Tumor , Gene Expression Regulation, Leukemic/drug effects , Humans , Imidazoles/pharmacology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Nylons/pharmacology , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Pyrroles/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...