Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Thyroid ; 34(5): 659-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38482822

ABSTRACT

Background: Congenital hypothyroidism (CH) is caused by mutations in cysteine residues, including Cys655 and Cys825 that form disulfide bonds in thyroid peroxidase (TPO). It is highly likely that these disulfide bonds could play an important role in TPO activity. However, to date, no study has comprehensively analyzed cysteine mutations that form disulfide bonds in TPO. In this study, we induced mutations in cysteine residues involved in disulfide bonds formation and analyzed their effect on subcellular localization, degradation, and enzyme activities to evaluate the importance of disulfide bonds in TPO activity. Methods: Vector plasmid TPO mutants, C655F and C825R, known to occur in CH, were transfected into HEK293 cells. TPO activity and protein expression levels were measured by the Amplex red assay and Western blotting. The same procedure was performed in the presence of MG132 proteasome inhibitor. Subcellular localization was determined using immunocytochemistry and flow cytometry. The locations of all disulfide bonds within TPO were predicted using in silico analysis. All TPO mutations associated with disulfide bonds were induced. TPO activity and protein expression levels were also measured in all TPO mutants associated with disulfide bonds using the Amplex red assay and Western blotting. Results: C655F and C825R showed significantly decreased activity and protein expression compared with the wild type (WT) (p < 0.05). In the presence of the MG132 proteasome inhibitor, the protein expression level of TPO increased to a level comparable with that of the WT without increases in its activity. The degree of subcellular distribution of TPO to the cell surface in the mutants was lower compared with the WT TPO. Twenty-four cysteine residues were involved in the formation of 12 disulfide bonds in TPO. All TPO mutants harboring an amino acid substitution in each cysteine showed significantly reduced TPO activity and protein expression levels. Furthermore, the differences in TPO activity depended on the position of the disulfide bond. Conclusions: All 12 disulfide bonds play an important role in the activity of TPO. Furthermore, the mutations lead to misfolding, degradation, and membrane insertion.


Subject(s)
Disulfides , Iodide Peroxidase , Proteasome Endopeptidase Complex , Humans , Iodide Peroxidase/metabolism , Iodide Peroxidase/genetics , Iodide Peroxidase/chemistry , HEK293 Cells , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Disulfides/metabolism , Disulfides/chemistry , Mutation , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Cysteine/metabolism , Proteolysis , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Autoantigens
2.
iScience ; 26(6): 106957, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37332605

ABSTRACT

Arginine-rich dipeptide repeat proteins (R-DPRs), poly(PR) and poly(GR), translated from the hexanucleotide repeat expansion in the amyotrophic lateral sclerosis (ALS)-causative C9ORF72 gene, contribute significantly to pathogenesis of ALS. Although both R-DPRs share many similarities, there are critical differences in their subcellular localization, phase separation, and toxicity mechanisms. We analyzed localization, protein-protein interactions, and phase separation of R-DPR variants and found that sufficient segregation of arginine charges is necessary for nucleolar distribution. Proline not only efficiently separated the charges, but also allowed for weak, but highly multivalent binding. In contrast, because of its high flexibility, glycine cannot fully separate the charges, and poly(GR) behaves similarly to the contiguous arginines, being trapped in the cytoplasm. We conclude that the amino acid that spaces the arginine charges determines the strength and multivalency of the binding, leading to differences in localization and toxicity mechanisms.

3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887012

ABSTRACT

Membrane-less organelles (MLOs) are formed by biomolecular liquid-liquid phase separation (LLPS). Proteins with charged low-complexity domains (LCDs) are prone to phase separation and localize to MLOs, but the mechanism underlying the distributions of such proteins to specific MLOs remains poorly understood. Recently, proteins with Arg-enriched mixed-charge domains (R-MCDs), primarily composed of R and Asp (D), were found to accumulate in nuclear speckles via LLPS. However, the process by which R-MCDs selectively incorporate into nuclear speckles is unknown. Here, we demonstrate that the patterning of charged amino acids and net charge determines the targeting of specific MLOs, including nuclear speckles and the nucleolus, by proteins. The redistribution of R and D residues from an alternately sequenced pattern to uneven blocky sequences caused a shift in R-MCD distribution from nuclear speckles to the nucleolus. In addition, the incorporation of basic residues in the R-MCDs promoted their localization to the MLOs and their apparent accumulation in the nucleolus. The R-MCD peptide with alternating amino acids did not undergo LLPS, whereas the blocky R-MCD peptide underwent LLPS with affinity to RNA, acidic poly-Glu, and the acidic nucleolar protein nucleophosmin, suggesting that the clustering of R residues helps avoid their neutralization by D residues and eventually induces R-MCD migration to the nucleolus. Therefore, the distribution of proteins to nuclear speckles requires the proximal positioning of D and R for the mutual neutralization of their charges.


Subject(s)
Arginine , Cell Nucleolus , Arginine/metabolism , Cell Nucleolus/metabolism , Nuclear Proteins/metabolism , Organelles/metabolism , RNA/metabolism
4.
ACS Omega ; 7(23): 19280-19287, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721931

ABSTRACT

Dipeptide repeat proteins (DRPs) are considered a significant cause of amyotrophic lateral sclerosis (ALS), and their liquid-liquid phase separation (LLPS) formation with other biological molecules has been studied both in vitro and in vivo. The immobilization and wetting of the LLPS droplets on glass surfaces are technically crucial for the measurement with optical microscopy. In this work, we characterized the surface diffusion of LLPS droplets of the DRPs with different lengths to investigate the multivalent effect on the interactions of their LLPS droplets with the glass surface. Using fluorescence microscopy and the single-particle tracking method, we observed that the large multivalency drastically changed the surface behavior of the droplets. The coalescence and wetting of the droplets were accelerated by increasing the multivalency of peptides in the LLPS system. Our findings on the effect of multivalency on interactions between droplets and glass surfaces could provide a new insight to enhance the understanding of LLPS formation and biophysical properties related to the solid/liquid interface.

6.
Lab Invest ; 102(9): 912-918, 2022 09.
Article in English | MEDLINE | ID: mdl-35459796

ABSTRACT

One of the critical definitions of neurodegenerative diseases is the formation of insoluble intracellular inclusion body. These inclusions are found in various neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Huntington's disease, Parkinson's disease, and frontotemporal dementia (FTD). Each inclusion body contains disease-specific proteins and is also resistant to common detergent treatments. These aggregates are generally ubiquitinated and thus recognized as misfolded by the organism. They are observed in residual neurons at the affected sites in each disease, suggesting a contribution to disease pathogenesis. The molecular mechanisms for the formation of these inclusion bodies remain unclear. Some proteins, such as superoxide dismutase 1 (SOD1) mutant that causes familial ALS, are highly aggregative due to altered folding caused by point mutations. Still, the aggregates observed in neurodegenerative diseases contain wild-type proteins. In recent years, it has been reported that the proteins responsible for neurodegenerative diseases undergo liquid-liquid phase separation (LLPS). In particular, the ALS/FTD causative proteins such as TAR DNA-binding protein 43 kDa (TDP-43) and fused-in-sarcoma (FUS) undergo LLPS. LLPS increases the local concentration of these proteins, and these proteins eventually change their phase from liquid to solid (liquid-solid phase transition) due to abnormal folding during repetitive separation cycles into two phases and recovery to one phase. In addition to the inclusion body formation, sequestration of essential proteins into the LLPS droplets or changes in the LLPS status can directly impair neural functions and cause diseases. In this review, we will discuss the relationship between the LLPS observed in ALS causative proteins and the pathogenesis of the disease and outline potential therapeutic approaches.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Inclusion Bodies , Neurons , Superoxide Dismutase
7.
Am J Physiol Cell Physiol ; 322(2): C197-C204, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34910602

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have been thought as two distinct neurodegenerative diseases. However, recent genetic screening and careful investigations found the genetic and pathological overlap among these disorders. Hexanucleotide expansions in intron 1 of C9ORF72 are a leading cause of familial ALS and familial FTD. These expansions facilitate the repeat-associated non-ATG-initiated translation (RAN translation), producing five dipeptide repeat proteins (DRPs), including Arg-rich poly(PR: Pro-Arg) and poly(GR: Gly-Arg) peptides. Arg is a positively charged, highly polar amino acid that facilitates interactions with anionic molecules such as nucleic acids and acidic amino acids via electrostatic forces and aromatic amino acids via cation-π interaction, suggesting that Arg-rich DRPs underlie the pathophysiology of ALS via Arg-mediated molecular interactions. Arg-rich DRPs have also been reported to induce neurodegeneration in cellular and animal models via multiple mechanisms; however, it remains unclear why the Arg-rich DRPs exhibit such diverse toxic properties, because not all Arg-rich peptides are toxic. In this mini-review, we discuss the current understanding of the pathophysiology of Arg-rich C9ORF72 DRPs and introduce recent findings on the role of Arg distribution as a determinant of the toxicity and its contribution to the pathogenesis of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Dipeptides/metabolism , Peptide Fragments/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/chemistry , Dipeptides/chemistry , Dipeptides/toxicity , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Structure-Activity Relationship
8.
Sci Rep ; 11(1): 21638, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737339

ABSTRACT

L-type neutral amino acid transporter 1 (LAT1) is a heterodimeric membrane transport protein involved in neutral amino acid transport. LAT1 is highly expressed in various malignant solid tumors and plays an essential role in cell proliferation. However, its role in malignant lymphoma remains unknown. Here, we evaluated LAT1 expression level in tissues from 138 patients with Non-Hodgkin lymphoma (NHL). Overexpression of LAT1 was confirmed in all types of NHL and we found that there is a significant correlation between the level of LAT1 expression and lymphoma grade. The LAT1 expression was higher in aggressive types of lymphomas when compared with static types of lymphomas, suggesting that active tumor proliferation requires nutrient uptake via LAT1. The expression level of LAT1 was inversely correlated with patients' survival span. Furthermore, pharmacological inhibition of LAT1 by a specific inhibitor JPH203 inhibits lymphoma cell growth. In conclusion, our study demonstrated that LAT1 expression can be used as a prognostic marker for patients with NHL and targeting LAT1 by JPH203 can be a novel therapeutic modality for NHL.


Subject(s)
Large Neutral Amino Acid-Transporter 1/genetics , Lymphoma, Non-Hodgkin/metabolism , Adult , Aged , Aged, 80 and over , Amino Acid Transport System L/metabolism , Amino Acid Transport Systems/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Lymphoma, Non-Hodgkin/physiopathology , Male , Middle Aged , Prognosis , Transcriptome/genetics
9.
Biochem Biophys Res Commun ; 583: 29-34, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34717122

ABSTRACT

Membrane-less organelles (MLOs) formed by liquid-liquid phase separation (LLPS) play pivotal roles in biological processes. During LLPS, proteins and nucleotides are extremely condensed, resulting in changes in their conformation and biological functions. Disturbed LLPS homeostasis in MLOs is thought to associate with fatal diseases such as amyotrophic lateral sclerosis. Therefore, it is important to detect changes in the degree of crowding in MLOs. However, it has not been investigated well due to the lack of an appropriate method. To address this, we developed a genetically encoded macromolecular crowding sensor CRONOS (crowding sensor with mNeonGreen and mScarlet-I) that senses the degree of macromolecular crowding in MLOs using a fluorescence resonance energy transfer (FRET) system. CRONOS is a bright biosensor with a wide dynamic range and successfully detects changes in the macromolecular volume fraction in solution. By fusing to the scaffold protein of each MLO, we delivered CRONOS to MLO of interest and detected previously undescribed differences in the degree of crowding in each MLO. CRONOS also detected changes in the degree of macromolecular crowding in nucleolus induced by environmental stress or inhibition of transcription. These findings suggest that CRONOS can be a useful tool for the determination of molecular crowding and detection of pathological changes in MLOs in live cells.

10.
J Cell Biol ; 220(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34499080

ABSTRACT

Arg (R)-rich dipeptide repeat proteins (DPRs; poly(PR): Pro-Arg and poly(GR): Gly-Arg), encoded by a hexanucleotide expansion in the C9ORF72 gene, induce neurodegeneration in amyotrophic lateral sclerosis (ALS). Although R-rich DPRs undergo liquid-liquid phase separation (LLPS), which affects multiple biological processes, mechanisms underlying LLPS of DPRs remain elusive. Here, using in silico, in vitro, and in cellulo methods, we determined that the distribution of charged Arg residues regulates the complex coacervation with anionic peptides and nucleic acids. Proteomic analyses revealed that alternate Arg distribution in poly(PR) facilitates entrapment of proteins with acidic motifs via LLPS. Transcription, translation, and diffusion of nucleolar nucleophosmin (NPM1) were impaired by poly(PR) with an alternate charge distribution but not by poly(PR) variants with a consecutive charge distribution. We propose that the pathogenicity of R-rich DPRs is mediated by disturbance of proteins through entrapment in the phase-separated droplets via sequence-controlled multivalent protein-protein interactions.


Subject(s)
C9orf72 Protein/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Arginine , Cell Line , Cell Nucleolus/metabolism , Dipeptides/metabolism , HEK293 Cells , Humans , Peptides/metabolism , Proteomics/methods
11.
Lab Invest ; 101(10): 1331-1340, 2021 10.
Article in English | MEDLINE | ID: mdl-34131277

ABSTRACT

One of the pathological hallmarks of amyotrophic lateral sclerosis (ALS) is mislocalized, cytosolic aggregation of TAR DNA-Binding Protein-43 (TDP-43). Not only TDP-43 per se is a causative gene of ALS but also mislocalization and aggregation of TDP-43 seems to be a common pathological change in both sporadic and familial ALS. The mechanism how nuclear TDP-43 transforms into cytosolic aggregates remains elusive, but recent studies using optogenetics have proposed that aberrant liquid-liquid phase separation (LLPS) of TDP-43 links to the aggregation process, leading to cytosolic distribution. Although LLPS plays an important role in the aggregate formation, there are still several technical problems in the optogenetic technique to be solved to progress further in vivo study. Here we report a chemically oligomerizable TDP-43 system. Oligomerization of TDP-43 was achieved by a small compound AP20187, and oligomerized TDP-43 underwent aggregate formation, followed by cytosolic mislocalization and induction of cell toxicity. The mislocalized TDP-43 co-aggregated with wt-TDP-43, Fused-in-sarcoma (FUS), TIA1 and sequestosome 1 (SQSTM1)/p62, mimicking ALS pathology. The chemically oligomerizable TDP-43 also revealed the roles of the N-terminal domain, RNA-recognition motif, nuclear export signal and low complexity domain in the aggregate formation and mislocalization of TDP-43. The aggregate-prone properties of TDP-43 were enhanced by a familial ALS-causative mutation. In conclusion, the chemically oligomerizable TDP-43 system could be useful to study the mechanisms underlying the droplet-aggregation phase transition and cytosolic mislocalization of TDP-43 in ALS and further study in vivo.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans
12.
Mol Ther Methods Clin Dev ; 21: 199-208, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33850951

ABSTRACT

Extracellular vesicles derived from mammalian cells could be useful carriers for drug delivery systems (DDSs); however, with regard to clinical application, there are several issues to be overcome. Acerola (Malpighia emarginata DC.) is a popular health food. In this study, the feasibility of orally administered nucleic acid drug delivery by acerola exosome-like nanoparticles (AELNs) was examined. AELNs were recovered from acerola juice using an affinity column instead of ultracentrifugation. MicroRNA (miRNA) was sufficiently encapsulated in AELNs by 30-min incubation on ice and was protected against RNase, strong acid, and base treatments. The administration of an AELN/miRNA mixture in cells achieved downregulation of the miRNA's target gene, and this mixture showed cytoplasmic localization. AELNs orally delivered small RNA to the digestive system in vivo. The target gene-suppressing effect in the small intestine and liver peaked 1 day after administration, indicating potential for use as an oral DDS for nucleic acid in the digestive system.

13.
Langmuir ; 37(18): 5635-5641, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33929866

ABSTRACT

The liquid-liquid phase separation (LLPS) of proteins and RNA molecules has emerged in recent years as an important physicochemical process to explain the organization of membrane-less organelles in living cells and cellular functions and even some fatal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS) due to the spontaneous condensation and growth of LLPS droplets. In general, the characterization of LLPS droplets has been performed by optical microscopy, where we need transparent substrates. By virtue of the liquid and wetting properties of LLPS droplets on a glass surface, there have been some technical protocols recommended to immobilize droplets on the surfaces. However, interactions between LLPS droplets and glass surfaces still remain unclear. Here, we investigated the surface diffusion of LLPS droplets on the glass surface to understand the interactions of droplets in a dynamic manner, and employed chemically modified glass surface with charges to investigate their Coulombic interaction with the surface. Using the single-particle tracking method, we first analyzed the diffusion of droplets on an untreated glass surface. Then, we compared the diffusion modes of LLPS droplets on each substrate and found that there were two major states of droplets on a solid surface: fix and diffusion mode for the LLPS droplet diffusion. While untreated glass showed a diffusion of droplets mainly, chemically modified glass with positive charges exhibited droplets fixed on the surface. It could arise from the Coulombic interaction between droplets and solid surface, where LLPS droplets have a negative ζ-potential. Our findings on the dynamics of LLPS at the solid/liquid interface could provide a novel insight to advance fundamental studies for understanding the LLPS formation.


Subject(s)
Dipeptides , RNA , Glass , Organelles , Proteins
14.
Sci Rep ; 10(1): 21766, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303811

ABSTRACT

Streptozotocin administration to mice (STZ-mice) induces type I diabetes and hepatocellular carcinoma (HCC). We attempted to elucidate the carcinogenic mechanism and the miRNA expression status in the liver and blood during the precancerous state. Serum and liver tissues were collected from STZ-mice and non-treated mice (CTL-mice) at 6, 10, and 12 W. The exosome enriched fraction extracted from serum was used. Hepatic histological examination and hepatic and exosomal miRNA expression analysis were serially performed using next-generation sequencing (NGS). Human miRNA expression analysis of chronic hepatitis liver tissue and exosomes, which were collected before starting the antiviral treatment, were also performed. No inflammation or fibrosis was found in the liver of CTL-mice during the observation period. In STZ-mice, regeneration and inflammation of hepatocytes was found at 6 W and nodules of atypical hepatocytes were found at 10 and 12 W. In the liver tissue, during 6-12 W, the expression levels of let-7f-5p, miR-143-3p, 148a-3p, 191-5p, 192-5p, 21a-5p, 22-3p, 26a-5p, and 92a-3p was significantly increased in STZ-mice, and anti-oncogenes of their target gene candidates were down-regulated. miR-122-5p was also significantly down-regulated in STZ-mice. Fifteen exosomal miRNAs were upregulated in STZ-mice. Six miRNAs (let-7f-5p, miR-10b-5p, 143-3p, 191-5p, 21a-5p, and 26a-5p) were upregulated, similarly to human HCC cases. From the precancerous state, aberrant expression of hepatic miRNAs has already occurred, and then, it can promote carcinogenesis. In exosomes, the expression pattern of common miRNAs between mice and humans before carcinogenesis was observed and can be expected to be developed as a cancer predictive marker.


Subject(s)
Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver/metabolism , MicroRNAs/analysis , MicroRNAs/blood , Precancerous Conditions/diagnosis , Precancerous Conditions/genetics , Animals , Carcinoma, Hepatocellular/blood , Exosomes/metabolism , Humans , Liver Neoplasms/blood , Mice , Precancerous Conditions/blood , Predictive Value of Tests
15.
iScience ; 23(12): 101810, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33299977

ABSTRACT

Endoplasmic reticulum (ER) stress is known to induce pro-inflammatory response and ultimately leads to cell death. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER-localized protein whose expression and secretion is induced by ER stress and a crucial survival factor. However, the underlying mechanism of how MANF exerts its cytoprotective activity remains unclear due to the lack of knowledge of its receptor. Here we show that Neuroplastin (NPTN) is such a receptor for MANF. Biochemical analysis shows the physiological interaction between MANF and NPTN on the cell surface. Binding of MANF to NPTN mitigates the inflammatory response and apoptosis via suppression of NF-kß signaling. Our results demonstrate that NPTN is a cell surface receptor for MANF, which modulates inflammatory responses and cell death, and that the MANF-NPTN survival signaling described here provides potential therapeutic targets for the treatment of ER stress-related disorders, including diabetes mellitus, neurodegeneration, retinal degeneration, and Wolfram syndrome.

16.
Int J Endocrinol ; 2020: 9132372, 2020.
Article in English | MEDLINE | ID: mdl-32908504

ABSTRACT

Congenital hypothyroidism (CH) is the most prevalent congenital endocrine disorder and causes mental retardation. A male Japanese patient with first cousin marriage parents was diagnosed as CH at 10 months. He was born before introduction of mass screening for CH. With continuous thyroid hormone replacement therapy, normal thyroid hormone status was maintained until adulthood. Genetic screening of next-generation sequencing was performed at the age of 52 years, and we identified a new homozygous thyroid peroxidase (TPO) gene mutation (GRCh38.p13, chromosome 2 at position 1493997, c.1964 G>T, p.Cys655Phe). TPO is an important enzyme to produce thyroid hormone. As demonstrated by a homology analysis of TPO proteins among different species, cysteine 655 residue is highly conserved, suggesting an important role in maintaining TPO function and structure. An in silico study with three-dimensional structure of the novel mutation was performed and suggested that the mutation abolished disulfide bond between cysteines at positions 598 and 655. An in vitro functional analysis using HEK293 cells revealed that TPO activity of the mutant was significantly impaired compared with that of the wild type. Furthermore, study of immunohistochemistry showed that localization of TPO in cells did not differ between the wild type and the mutant. In conclusion, this single disulfide bond loss mutation of a new TPO homozygous mutation, p.Cys655Phe, reduced TPO activity and caused congenital hypothyroidism without affecting subcellular localization of TPO proteins.

17.
Lab Invest ; 100(9): 1197-1207, 2020 09.
Article in English | MEDLINE | ID: mdl-32366942

ABSTRACT

Endoplasmic reticulum (ER) stress-mediated cell death is an emerging target for human chronic disorders, including neurodegeneration and diabetes. However, there is currently no treatment for preventing ER stress-mediated cell death. Here, we show that mesencephalic astrocyte-derived neurotrophic factor (MANF), a neurotrophic factor secreted from ER stressed cells, prevents ER stress-mediated ß cell death and enhances ß cell proliferation in cell and mouse models of Wolfram syndrome, a prototype of ER disorders. Our results indicate that molecular pathways regulated by MANF are promising therapeutic targets for regenerative therapy of ER stress-related disorders, including diabetes, retinal degeneration, neurodegeneration, and Wolfram syndrome.


Subject(s)
Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum/metabolism , Insulin-Secreting Cells/drug effects , Nerve Growth Factors/pharmacology , Wolfram Syndrome/prevention & control , Animals , Cell Line, Tumor , Cells, Cultured , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Mice, Transgenic , Rats , Wolfram Syndrome/metabolism , Wolfram Syndrome/physiopathology
18.
Sci Adv ; 6(20): eaaz5195, 2020 05.
Article in English | MEDLINE | ID: mdl-32426498

ABSTRACT

Corneal endothelial cell (CEnC) loss after corneal transplantation is the major cause of graft failure and remains a clinically relevant challenge to overcome. Accumulated knowledge derived from long-term clinical outcomes suggested that elevated protein levels in the aqueous humor are associated with CEnC loss. However, the full spectrum of driver proteins and molecular processes remains to be determined. Here, we defined the somatic microenvironmental landscape and cellular response across human aqueous humor in samples with poor corneal transplantation clinical outcomes using multiomics analyses and clarified specific driver alterations, including complement activation and disturbed energy homeostasis. These driver alterations were also confirmed in aqueous humor from a novel murine model that spontaneously develops iris atrophy, leading to CEnC loss. The application of the integrative multiomics performed in human samples to the novel murine model will help the development of therapeutic modalities for patients with CEnC loss after corneal transplantation.


Subject(s)
Corneal Diseases , Corneal Transplantation , Animals , Aqueous Humor/metabolism , Atrophy/metabolism , Disease Models, Animal , Humans , Iris , Mice
19.
Lab Invest ; 100(6): 863-873, 2020 06.
Article in English | MEDLINE | ID: mdl-32066826

ABSTRACT

In patients with breast cancer, primary chemotherapy often fails due to survival of chemoresistant breast cancer stem cells (BCSCs) which results in recurrence and metastasis of the tumor. However, the factors determining the chemoresistance of BCSCs have remained to be investigated. Here, we profiled a series of differentially expressed microRNAs (miRNAs) between parental adherent breast cancer cells and BCSC-mimicking mammosphere-derived cancer cells, and identified hsa-miR-27a as a negative regulator for survival and chemoresistance of BCSCs. In the mammosphere, we found that the expression of hsa-miR-27a was downregulated, and ectopic overexpression of hsa-miR-27a reduced both number and size of mammospheres. In addition, overexpression of hsa-miR-27a sensitized breast cancer cells to anticancer drugs by downregulation of genes essential for detoxification of reactive oxygen species (ROS) and impairment of autophagy. Therefore, enhancing the hsa-miR-27a signaling pathway can be a potential therapeutic modality for breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , MicroRNAs , Reactive Oxygen Species/metabolism , Autophagy/genetics , Cell Line, Tumor , Female , Homeostasis/genetics , Humans , MicroRNAs/analysis , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics
20.
J Heart Lung Transplant ; 39(2): 103-112, 2020 02.
Article in English | MEDLINE | ID: mdl-31542298

ABSTRACT

BACKGROUND: A variant of c.14429G>A (p.Arg4810Lys, rs112735431) in the ring finger protein 213 gene (RNF213; NM_001256071.2) has been recently identified as a risk allele for pulmonary arterial hypertension (PAH). PAH can be added as a new member of RNF213-associated vascular diseases, which include Moyamoya disease and peripheral pulmonary stenosis. Our aim was to identify the clinical features and outcomes of PAH patients with this variant. METHODS: Whole-exome sequencing was performed in 139 idiopathic (or possibly heritable) PAH patients. RESULTS: The RNF213 p.Arg4810Lys variant was identified in a heterozygous state in 11 patients (7.9%). Time-course changes in hemodynamics after combination therapy in the patients with the RNF213 p.Arg4810Lys variant were significantly poorer compared with those carrying the bone morphogenic protein receptor type 2 (BMPR2) mutation (n = 36) (comparison of changes in mean pulmonary arterial pressure, p = 0.007). The event-free rate of death or lung transplantation was significantly poorer in RNF213 p.Arg4810Lys variant carriers than in BMPR2 mutation carriers (5-year event-free rate since the introduction of prostaglandin I2 infusion, 0% vs 93%, respectively; p < 0.001). CONCLUSIONS: Idiopathic PAH patients with the RNF213 p.Arg4810Lys variant are associated with poor clinical outcomes even in recent times. Earlier consideration of lung transplantation might be required for RNF213 p.Arg4810Lys variant carriers who are developing PAH. Documentation of the RNF213 p.Arg4810Lys variant, as well as already known pathogenic genes, such as BMPR2, can provide clinically relevant information for therapeutic strategies, leading to a personalized approach for the treatment of PAH.


Subject(s)
Adenosine Triphosphatases/genetics , DNA/genetics , Genetic Predisposition to Disease , Mutation , Pulmonary Arterial Hypertension/genetics , Ubiquitin-Protein Ligases/genetics , Adenosine Triphosphatases/metabolism , Adult , DNA Mutational Analysis , Female , Humans , Male , Middle Aged , Phenotype , Pulmonary Arterial Hypertension/metabolism , RING Finger Domains , Ubiquitin-Protein Ligases/metabolism , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...