Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(16): 12594-12599, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38596870

ABSTRACT

We report the spin reorientation transition (SRT) and the low field controllable continuous spin switching (SSW) of the Tm0.75Yb0.25FeO3 (TYFO) single crystal in this study. The SRT, characterized by the transition from Γ2(Fx, Cy, Gz)-Γ4(Gx, Ay, Fz), occurs within the temperature range of 20-27 K. Under an external magnetic field of 50 Oe, the SSW occurs along the c-axis at approximately 98 K due to the reversal of Tm3+ magnetic moment induced by the magnetic coupling change between Tm3+ and Fe3+, transitioning from a parallel to an antiparallel alignment. Notably, a continuous SSW is observed along the a-axis at low temperatures, which has not been previously reported in rare earth orthoferrites. This unique behavior can be easily manipulated by low magnetic fields within the temperature range of 2-20 K. Both the spin reorientation transition and spin switching phenomena in the TYFO single crystal arise from interactions between rare earth ions and iron ions and can be effectively regulated by applied low magnetic fields, making it a promising material for low-field spin devices.

2.
Inorg Chem ; 61(37): 14815-14823, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36074388

ABSTRACT

Field-tuning mechanisms of spin switching and spin reorientation (SR) transition were investigated in a series of high-quality single crystal samples of PrxEr1-xFeO3 (x = 0, 0.1, 0.3, 0.5) prepared using the optical floating zone method. The single crystal quality, structure, and axis orientation were determined by room-temperature powder X-ray diffraction, back-reflection Laue X-ray diffraction, and Raman scattering at room temperature. Magnetic measurements indicate that the type and temperature region of SR transition are tuned by introducing different ratios of Pr3+ doping (x = 0, 0.1, 0.3, 0.5). The trigger temperatures of spin switching and magnetization compensation temperature of PrxEr1-xFeO3 crystals can be adjusted by doping with different proportions of Pr3+. Furthermore, the trigger temperature of the two types of spin switching in Pr0.3Er0.7FeO3 along the a-axis can be regulated by an external field. Meanwhile, the isothermal magnetic field-triggered spin switching effect is also observed along the a and c-axes of Pr0.3Er0.7FeO3. An in-depth understanding of the magnetic coupling and competition between the R3+ and Fe3+ magnetic sublattices, within the RFeO3 system, has important implications for advancing the practical applications of the relevant spin switching materials.

3.
Phys Chem Chem Phys ; 24(2): 735-742, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34935008

ABSTRACT

The magnetic behavior of a rare-earth orthoferrite ErFeO3 single crystal can be controlled by low magnetic fields from a few to hundreds of Oe. Here we investigated a high-quality ErFeO3 single crystal in the temperature range of 5-120 K, with two types of spin switching in the field-cooled-cooling (FCC) and field-cooled-warming (FCW) processes below the temperature of the spin reorientation (SR) transition from Γ4 to Γ2 at 98-88 K. The magnitude of the applied magnetic fields can regulate two types of spin switching along the a-axis of the ErFeO3 single crystal but does not affect the type and temperature range of the SR transition. An interesting "multi-step" type-II spin switching is observed in FCW under low magnetic fields (H < 18 Oe) just below the SR transition temperature, which is associated with the interaction and the change of magnetic configurations from rare-earth and iron magnetic sublattices. When the magnetic field is lower than 15 Oe, the type-II spin switching in the FCW process gradually changes to a continuous magnetic transition along the a-axis of the ErFeO3 single crystal. As the magnetic field is reduced to less than 17 Oe, the type-I spin switching in the FCW process also transforms into a continuous magnetic transition. Understanding the magnetic reversal effects will help us explore the potential applications of these magnetic materials for future information devices.

4.
J Phys Condens Matter ; 33(27)2021 May 28.
Article in English | MEDLINE | ID: mdl-33930882

ABSTRACT

We investigate the detailed analysis of the magnetic properties in a series of Pr1-xSmxFeO3single crystals fromx= 0 to 1 with an interval of 0.1. Doping controlled spin reorientation transition temperatureTSRΓ4(Gx,Ay,Fz) to Γ2(Fx,Cy,Gz) covers a wide temperature range including room temperature. A 'butterfly'-shape type-I spin switching with 180° magnetization reversal occurs below and above the magnetization compensation points inx= 0.4 to 0.8 compounds. Interestingly, in Pr0.6Sm0.4FeO3single crystal, we find an inadequate spin reorientation transition accompanied by uncompleted type-I spin switching in the temperature region from 138 to 174 K. Furthermore, a type-II spin switching appears at 23 K, as evidenced from the magnetization curve in field-cooled-cooling (FCC) mode initially bifurcate from zero-field-cooled (ZFC) magnetization curve at 40 K and finally drops back to coincide the ZFC magnetization value at 23 K. Our current research reveals a strong and complex competition between Pr3+-Fe3+and Sm3+-Fe3+exchange interactions and more importantly renders a window to design spintronic device materials for future potential applications.

5.
Phys Chem Chem Phys ; 21(46): 25826-25837, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31729504

ABSTRACT

The Z-type hexaferrites Ba3(Zn1-xCox)2Fe24O41 (x = 0.2, 0.4, 0.6, 0.8, defined as Z1-Z4) were synthesized by a sol-gel method. With increasing cobalt concentration, the origin of magnetoelectric (ME) coupling and the effects of crystal parameters, occupation of ions, and magnetocrystalline anisotropy (MCA) on ME current were studied systematically. The mechanism of magnetic phase transition, revealing the evolution of the magnetic order in the temperature range of 10-400 K, was discussed in detail. Our results suggest that the ferroelectricity of Z1-Z4 originates from both inverse Dzyaloshinskii Moriya (DM) interaction and p-d hybridization mechanism. In particular the ME coupling property is only dominated by p-d hybridization with spin-orbit coupling. This study provides an effective way to improve the ME coupling property of hexaferrites, which have potential applications in the design of new electronic devices.

6.
Sci Rep ; 7(1): 14079, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074870

ABSTRACT

We report the structural, magnetoelectric (ME), magnetic and electric control of magnetic properties in Co4Nb2O9 (CNO) single crystal. A detailed ME measurement reveals a nonlinear ME effect instead of a linear ME effect in CNO single crystal. By fitting the magnetization-electric field (M-E) curve, it can be found that the linear ([Formula: see text]) and quadratic (γ) coefficients equal to ~8.27 ps/m and ~-6.46 ps/MV for upper branch, as well as ~8.38 ps/m and ~6.75 ps/MV for the lower branch. More importantly, a pronounced response was observed under a small cooling magnetic field, which cannot even cause the spin flop. This suggests a magnetoelectric effect can occur at paraelectric state for CNO single crystal. Furthermore, we also found that the magnetization of every axis responds to electric field applied along a-axis, but fails to do so when the electric field is applied c-axis. Such findings supply a direct evidence to the magnetic structure and ME coupling mechanism indirectly reflected by our neutron experiment.

7.
IUCrJ ; 4(Pt 5): 598-603, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989715

ABSTRACT

Spin reorientation is a magnetic phase transition in which rotation of the magnetization vector with respect to the crystallographic axes occurs upon a change in the temperature or magnetic field. For example, SmFeO3 shows a magnetization rotation from the c axis above 480 K to the a axis below 450 K, known as the Γ4 → Γ2 transition. This work reports the successful synthesis of the new single-crystal perovskite SmFe0.75Mn0.25O3 and finds interesting spin reorientations above and below room temperature. In addition to the spin reorientation of the Γ4 → Γ2 magnetic phase transition observed at around TSR2 = 382 K, a new spin reorientation, Γ2 → Γ1, was seen at around TSR1 = 212 K due to Mn doping, which could not be observed in the parent rare earth perovskite compound. This unexpected spin configuration has complete antiferromagnetic order without any canting-induced weak ferromagnetic moment, resulting in zero magnetization in the low-temperature regime. M-T and M-H measurements have been made to study the temperature and magnetic-field dependence of the observed spin reorientation transitions.

8.
Sci Rep ; 6: 37529, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886220

ABSTRACT

RFeO3 orthoferrites, where R is a rare-earth ion of the lanthanide series, are attracting attention mostly because of their promising fast spin dynamics. The magnetic properties of these materials seem to crucially depend on whether the magnetizations of the R and Fe ions' weak ferromagnetic (WFM) components are parallel or antiparallel to each other. Here, we report an extensive investigation of a high-quality DyFeO3 single crystal in which the induced Dy3+ magnetization (FDy) has a natural tendency to be antiparallel to Fe3+ sublattice magnetization (FFe) within a large temperature window. Moreover, we find that specific variations of temperature and applied magnetic fields allow us to make FDy parallel to FFe, or force a spin-flip transition in FFe, among other effects. We found three different magnetic states that respond to temperature and magnetic fields, i.e. linear versus constant or, alternatively, presenting either behavior depending on the history of the sample. An original magnetic field-versus-temperature phase diagram is constructed to indicate the region of stability of the different magnetic phases, and to reveal the precise conditions yielding sudden spin switching and reversals. Knowledge of such a phase diagram is of potential importance to applications in spintronics and magnetic devices.

9.
Sci Rep ; 4: 5960, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25091202

ABSTRACT

The prospect of controlling the magnetization (M) of a material is of great importance from the viewpoints of fundamental physics and future applications of emerging spintronics. A class of rare-earth orthoferrites RFeO3 (R is rare-earth element) materials exhibit striking physical properties of spin switching and magnetization reversal induced by temperature and/or applied magnetic field. Furthermore, due to the novel magnetic, magneto-optic and multiferroic properties etc., RFeO3 materials are attracting more and more interests in recent years. We have prepared and investigated a prototype of RFeO3 materials, namely SmFeO3 single-crystal. And we report magnetic measurements upon both field cooling (FC) and zero-field cooling (ZFC) of the sample, as a function of temperature and applied magnetic field. The central findings of this study include that the magnetization of single-crystal SmFeO3 can be switched by temperature, and tuning the magnitude of applied magnetic field allows us to realize such spin switching even at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...