Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 15(5): e0018424, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38624207

ABSTRACT

Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE: Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.


Subject(s)
Biofilms , Candida albicans , Fluorides , Streptococcus gordonii , Streptococcus mutans , Biofilms/drug effects , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/physiology , Candida albicans/metabolism , Streptococcus mutans/genetics , Streptococcus mutans/drug effects , Streptococcus mutans/metabolism , Streptococcus mutans/physiology , Fluorides/pharmacology , Fluorides/metabolism , Streptococcus gordonii/drug effects , Streptococcus gordonii/genetics , Streptococcus gordonii/physiology , Streptococcus gordonii/metabolism , Gene Knockout Techniques , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Dental Caries/microbiology
2.
Methods Enzymol ; 696: 43-63, 2024.
Article in English | MEDLINE | ID: mdl-38658088

ABSTRACT

Fluoride (F-) export proteins, including F- channels and F- transporters, are widespread in biology. They contribute to cellular resistance against fluoride ion, which has relevance as an ancient xenobiotic, and in more modern contexts like organofluorine biosynthesis and degradation or dental medicine. This chapter summarizes quantitative methods to measure fluoride transport across membranes using fluoride-specific lanthanum-fluoride electrodes. Electrode-based measurements can be used to measure unitary fluoride transport rates by membrane proteins that have been purified and reconstituted into lipid vesicles, or to monitor fluoride efflux into living microbial cells. Thus, fluoride electrode-based measurements yield quantitative mechanistic insight into one of the major determinants of fluoride resistance in microorganisms, fungi, yeasts, and plants.


Subject(s)
Fluorides , Lanthanum , Fluorides/chemistry , Fluorides/metabolism , Lanthanum/chemistry , Lanthanum/metabolism , Electrodes , Biological Transport , Ion-Selective Electrodes
3.
bioRxiv ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38293214

ABSTRACT

Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride, but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time, and biochemical purification the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms, and that S. mutans is especially susceptible to fluoride toxicity.

4.
Commun Biol ; 6(1): 124, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721030

ABSTRACT

Group A Streptococcus (GAS) is a strict human pathogen possessing a unique pathogenic trait that utilizes the cooperative activity of NAD+-glycohydrolase (NADase) and Streptolysin O (SLO) to enhance its virulence. How NADase interacts with SLO to synergistically promote GAS cytotoxicity and intracellular survival is a long-standing question. Here, the structure and dynamic nature of the NADase/SLO complex are elucidated by X-ray crystallography and small-angle scattering, illustrating atomic details of the complex interface and functionally relevant conformations. Structure-guided studies reveal a salt-bridge interaction between NADase and SLO is important to cytotoxicity and resistance to phagocytic killing during GAS infection. Furthermore, the biological significance of the NADase/SLO complex in GAS virulence is demonstrated in a murine infection model. Overall, this work delivers the structure-functional relationship of the NADase/SLO complex and pinpoints the key interacting residues that are central to the coordinated actions of NADase and SLO in the pathogenesis of GAS infection.


Subject(s)
Streptococcus , Streptolysins , Humans , Animals , Mice , Bacterial Proteins , NAD+ Nucleosidase
5.
Anticancer Res ; 42(1): 531-546, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34969763

ABSTRACT

BACKGROUND/AIM: Helicobacter pylori, a gram-negative bacterium, causes chronic stomach diseases in humans. Heat shock proteins (HSPs) are involved in cell integrity, cell growth, and gastric mucosa colonization by H. pylori. This study aimed to investigate HSP expression levels in H. pylori-infected gastric adenocarcinoma AGS cells. MATERIALS AND METHODS: We determined protein expression levels using iTRAQ proteomics analysis. We analyzed the possible network interactions for H. pylori targets in AGS cells using the Ingenuity Pathway Analysis (IPA) software. RESULTS: H. pylori-infected AGS cells potentially targeted EIF2 and BAG2 signaling pathways to regulate cell physiology. In addition, after 3, 6, and 12 h of infection, western blotting revealed significantly decreased HSP70 and HSP105 expression. CONCLUSION: H. pylori decreases HSPs in AGS gastric adenocarcinoma cells, and this is associated with the regulation of EIF2 and BAG2 signaling pathways.


Subject(s)
Adenocarcinoma/genetics , Eukaryotic Initiation Factor-2/genetics , HSP70 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Stomach Neoplasms/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HSP110 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Helicobacter Infections/genetics , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Humans , Proteomics , Stomach/metabolism , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
6.
J Biol Chem ; 295(11): 3734-3745, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32005667

ABSTRACT

Most of Gram-positive bacteria anchor surface proteins to the peptidoglycan cell wall by sortase, a cysteine transpeptidase that targets proteins displaying a cell wall sorting signal. Unlike other bacteria, Clostridium difficile, the major human pathogen responsible for antibiotic-associated diarrhea, has only a single functional sortase (SrtB). Sortase's vital importance in bacterial virulence has been long recognized, and C. difficile sortase B (Cd-SrtB) has become an attractive therapeutic target for managing C. difficile infection. A better understanding of the molecular activity of Cd-SrtB may help spur the development of effective agents against C. difficile infection. In this study, using site-directed mutagenesis, biochemical and biophysical tools, LC-MS/MS, and crystallographic analyses, we identified key residues essential for Cd-SrtB catalysis and substrate recognition. To the best of our knowledge, we report the first evidence that a conserved serine residue near the active site participates in the catalytic activity of Cd-SrtB and also SrtB from Staphylococcus aureus The serine residue indispensable for SrtB activity may be involved in stabilizing a thioacyl-enzyme intermediate because it is neither a nucleophilic residue nor a substrate-interacting residue, based on the LC-MS/MS data and available structural models of SrtB-substrate complexes. Furthermore, we also demonstrated that residues 163-168 located on the ß6/ß7 loop of Cd-SrtB dominate specific recognition of the peptide substrate PPKTG. The results of this work reveal key residues with roles in catalysis and substrate specificity of Cd-SrtB.


Subject(s)
Amino Acids/metabolism , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Clostridioides difficile/enzymology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Amino Acid Sequence , Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Conserved Sequence , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Mutation/genetics , Protein Structure, Secondary , Serine/metabolism , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...