Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Cells ; 12(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37998363

ABSTRACT

Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , MicroRNAs/genetics , Iron
2.
Curr Issues Mol Biol ; 45(3): 2157-2169, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36975508

ABSTRACT

The skin is the most voluminous organ of the human body and is exposed to the outer environment. Such exposed skin suffers from the effects of various intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, and skin pigmentation. Skin pigmentation occurs in skin aging and is caused by hyper-melanogenesis and oxidative stress. Protocatechuic acid (PCA) is a natural secondary metabolite from a plant-based source widely used as a cosmetic ingredient. We chemically designed and synthesized PCA derivatives conjugated with alkyl esters to develop effective chemicals that have skin-whitening and antioxidant effects and enhance the pharmacological activities of PCA. We identified that melanin biosynthesis in B16 melanoma cells treated with alpha-melanocyte-stimulating hormone (α-MSH) is decreased by PCA derivatives. We also found that PCA derivatives effectively have antioxidant effects in HS68 fibroblast cells. In this study, we suggest that our PCA derivatives are potent ingredients for developing cosmetics with skin-whitening and antioxidant effects.

3.
Life Sci ; 301: 120619, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35561750

ABSTRACT

AIMS: In biology and medicine, hypoxia refers to reduced oxygen tension or oxygen starvation resulting from various environmental or pathological conditions. Prolonged hypoxia may lead to an imbalance in protein production and a loss of muscle mass in animals. The physiological response to hypoxia includes oxidative stress-induced activation of complex cell-signaling networks such as hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK-STAT). Methylsulfonylmethane (MSM) is a natural sulfur compound that regulates HIF-1α expression and provides cytoprotection from oxidative stress. In this study, we explored the anti-hypoxic activity and cytoprotective effect of MSM in cobalt chloride (CoCl2)-induced hypoxic C2C12 mouse myoblast culture. MATERIALS AND METHODS: We used western blotting, real time PCR, flow cytometry for molecular signaling studies and we also used MTT assay and ChIP assay along with comet assay for cellular processes. KEY FINDINGS: MSM prevented the CoCl2 induced cytotoxicity. Molecular markers of hypoxia, induced by CoCl2, were normalized or reduced by MSM, which also inhibited the effect of CoCl2-induced JAK2/STAT5b/Cyclin D1 and PI3K/AKT signaling. CoCl2-induced oxidative stress results in activation of the NRF2/HO-1-mediated cell survival pathway and inhibition of DNA repair, both of which were prevented by MSM. SIGNIFICANCE: We suggest MSM can be considered as a candidate drug for reducing the effects of hypoxia in both animals and humans.


Subject(s)
Chlorides , Phosphatidylinositol 3-Kinases , Animals , Cell Hypoxia , Chlorides/pharmacology , Cobalt/metabolism , Dimethyl Sulfoxide , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Myoblasts/metabolism , Oxygen/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Sulfones
4.
J Oncol ; 2022: 6737248, 2022.
Article in English | MEDLINE | ID: mdl-35222644

ABSTRACT

Embryonic cancer cells (CSCs) could cause different types of cancer, a skill that makes them even more dangerous than other cancer cells. Identifying CSCs using natural products is a good option as it inhibits the recurrence of cancer with moderate various effects. Ursolic acid (UA) is a pentacyclic triterpenoid extracted from fruit and herbal remedies and has known anticancer functions against various cancer cells. However, its potential against CSCs remains uncertain. This study was planned to examine the induction of cell apoptosis by the UA. For cell signaling studies, we performed experiments, which are real-time qPCR and immunoblotting. Also, various cellular processes were analyzed using flow cytometry. The results raised a barrier to cell proliferation by the UA in NTERA-2 and NCCIT cells. Morphological studies also confirmed the UA's ability to cause cell death in embryonic CSCs. Examination of cell death importation showed that the UA formed the expression of the iNOS and thus the cell generation and mitochondrial reactive oxygen generation, which created a reaction to cellular DNA damage by raising the protein levels of phospho-histone ATR and ATM. In addition, the UA created the binding of the G0/G1 cell cycle to NTERA-2 and NCCIT cells, improved the expression levels of p21 and p27, and reduced the expression levels of CDK4, cyclin D1, and cyclin E, confirming the UA's ability to initiate cell cycle arrest. Finally, the UA created an internal mechanism of apoptosis in the embryonic CSC using BAX and cytochrome c regulation as well as the regulation of BCL-xL and BCL-2 proteins. Therefore, UA could be the best candidate for targeting CSCs and thus suppressing the emergence of cancer.

5.
Front Oncol ; 11: 781720, 2021.
Article in English | MEDLINE | ID: mdl-34804985

ABSTRACT

Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSCs with natural compounds is a promising approach as it suppresses cancer recurrence with fewer adverse effects. 6-Gingerol is an active component of ginger, which exhibits well-known anti-cancer activities. This study determined the mechanistic aspects of cell death induction by 6-gingerol. To analyze cellular processes, we used Western blot and real-time qPCR for molecular signaling studies and conducted flow cytometry. Our results suggested an inhibition of CSC marker expression and Wnt/ß-catenin signaling by 6-gingerol in NCCIT and NTERA-2 cells. 6-Gingerol induced reactive oxygen species generation, the DNA damage response, cell cycle arrest, and the intrinsic pathway of apoptosis in embryonic CSCs. Furthermore, 6-gingerol inhibited iron metabolism and induced PTEN, which both played vital roles in the induction of cell death. The activation of PTEN resulted in the inhibition of PD-L1 expression through PI3K/AKT/p53 signaling. The induction of PTEN also mediated the downregulation of microRNAs miR-20b, miR-21, and miR-130b to result in PD-L1 suppression by 6-gingerol. Hence, 6-gingerol may be a promising candidate to target CSCs by regulating PTEN-mediated PD-L1 expression.

6.
Cells ; 10(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34831070

ABSTRACT

Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSC using natural compounds is a good approach as it suppresses cancer recurrence with fewer adverse effects, and methylsulfonylmethane (MSM) is a sulfur-containing compound with well-known anticancer activities. This study determined the mechanistic aspects of the anticancer activity of MSM. We used Western blotting and real-time qPCR for molecular signaling studies and conducted flow cytometry for analyzing the processes in cells. Our results suggested an inhibition in the expression of CSC markers and Wnt/ß-catenin signaling. MSM induced TRAIL-mediated extrinsic apoptosis in NCCIT and NTERA-2 cells rather than an intrinsic pathway. Inhibition of iron metabolism-dependent reactive oxygen species (ROS) generation takes part in TRAIL-mediated apoptosis induction by MSM. Suppressing iron metabolism by MSM also regulated p38/p53/ERK signaling and microRNA expressions, such as upregulating miR-130a and downregulating miR-221 and miR-222, which resulted in TRAIL induction and thereby extrinsic pathway of apoptosis. Hence, MSM could be a good candidate for neoadjuvant therapy by targeting CSCs by inhibiting iron metabolism.


Subject(s)
Apoptosis , Dimethyl Sulfoxide/pharmacology , Embryonal Carcinoma Stem Cells/pathology , Iron/metabolism , Sulfones/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints/drug effects , DNA Damage , Embryonal Carcinoma Stem Cells/drug effects , Embryonal Carcinoma Stem Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Cells ; 10(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34685529

ABSTRACT

Iron metabolism and heme biosynthesis are essential processes in cells during the energy cycle. Alteration in these processes could create an inflammatory condition, which results in tumorigenesis. Studies are conducted on the exact role of iron/heme metabolism in induced inflammatory conditions. This study used lipopolysaccharide (LPS)- or high-glucose-induced inflammation conditions in THP-1 cells to study how iron/heme metabolism participates in inflammatory responses. Here, we used iron and heme assays for measuring total iron and heme. We also used flow cytometry and Western blotting to analyze molecular responses. Our results demonstrated that adding LPS or high-glucose induced iron formation and heme synthesis and elevated the expression levels of proteins responsible for iron metabolism and heme synthesis. We then found that further addition of heme or 5-aminolevulinic acid (ALA) increased heme biosynthesis and promoted inflammatory responses by upregulating TLR4/NF-κB and inflammatory cytokine expressions. We also demonstrated the inhibition of heme synthesis using succinylacetone (SA). Moreover, N-MMP inhibited LPS- or high-glucose-induced inflammatory responses by inhibiting TLR4/NF-κB signaling. Hence, iron/heme metabolism checkpoints could be considered a target for treating inflammatory conditions.


Subject(s)
Inflammation/metabolism , Iron/metabolism , Lipopolysaccharides/metabolism , Monocytes/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Animals , Humans , Mice , Signal Transduction
8.
Int J Mol Sci ; 22(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576006

ABSTRACT

Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.


Subject(s)
B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Flavones/pharmacology , Lung Neoplasms/immunology , MicroRNAs/immunology , Neoplasm Proteins/immunology , RNA, Neoplasm/immunology , STAT3 Transcription Factor/immunology , Signal Transduction/drug effects , Tumor Escape/drug effects , A549 Cells , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Signal Transduction/immunology
9.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209829

ABSTRACT

Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Lung Neoplasms/pathology , Silybin/pharmacology , Spheroids, Cellular/pathology , Apoptosis/drug effects , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lung Neoplasms/metabolism , Models, Biological , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neovascularization, Physiologic/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , STAT5 Transcription Factor/metabolism , Spheroids, Cellular/drug effects
10.
Life (Basel) ; 11(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068523

ABSTRACT

Lipopolysaccharide (LPS)-induced inflammatory response leads to serious damage, up to and including tumorigenesis. Natural mineral sulfur, non-toxic sulfur (NTS), and methylsulfonylmethane (MSM) have anti-inflammatory activity that may inhibit LPS-induced inflammation. We hypothesized that sulfur compounds could inhibit LPS-induced inflammatory responses in CCD-986Sk skin fibroblasts. We used Western blotting and real-time PCR to analyze molecular signaling in treated and untreated cultures. We also used flow cytometry for cell surface receptor analysis, comet assays to evaluate DNA damage, and ELISA-based cytokine detection. LPS induced TLR4 activation and NF-κB signaling via canonical and protein kinase C (PKC)-dependent pathways, while NTS and MSM downregulated that response. NTS and MSM also inhibited LPS-induced nuclear accumulation and binding of NF-κB to proinflammatory cytokines COX-2, IL-1ß, and IL-6. Finally, the sulfur compounds suppressed LPS-induced ROS accumulation and DNA damage in CCD-986Sk cells. These results suggest that natural sulfur compounds could be used to treat inflammation and may be useful in the development of cosmetics.

11.
Mol Med Rep ; 24(1)2021 07.
Article in English | MEDLINE | ID: mdl-33907855

ABSTRACT

Janus kinase 2 (JAK2) and STAT3 signaling is considered a major pathway in lipopolysaccharide (LPS)­induced inflammation. Toll­like receptor 4 (TLR­4) is an inflammatory response receptor that activates JAK2 during inflammation. STAT3 is a transcription factor for the pro­inflammatory cytokine IL­6 in inflammation. Sulfur is an essential element in the amino acids and is required for growth and development. Non­toxic sulfur (NTS) can be used in livestock feeds as it lacks toxicity. The present study aimed to inhibit LPS­induced inflammation in C2C12 myoblasts using NTS by regulating TLR­4 and JAK2/STAT3 signaling via the modulation of IL­6. The 3­(4,5­dimethylthiazol­2­yl)­2,5­diphenyltetrazolium bromide assay was conducted to analyze cell viability and reverse transcription polymerase chain reaction and western blotting performed to measure mRNA and protein expression levels. Chromatin immunoprecipitation and enzyme­linked immunosorbent assays were used to determine the binding activity of proteins. The results indicated that NTS demonstrated a protective effect against LPS­induced cell death and inhibited LPS­induced expression of TLR­4, JAK2, STAT3 and IL­6. In addition, NTS inhibited the expression of nuclear phosphorylated­STAT3 and its binding to the IL­6 promoter. Therefore, NTS may be a potential candidate drug for the treatment of inflammation.


Subject(s)
Inflammation/drug therapy , Interleukin-6/metabolism , Janus Kinase 2/metabolism , Lipopolysaccharides/adverse effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Sulfur/pharmacology , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Cytokines/metabolism , Gene Expression Regulation , Inflammation/chemically induced , Inflammation/genetics , Janus Kinase 2/genetics , Mice , STAT3 Transcription Factor/genetics , Toll-Like Receptor 4/genetics
12.
Biomedicines ; 9(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805840

ABSTRACT

Targeted therapy based on natural compounds is one of the best approaches against non-small cell lung cancer. Ursolic acid (UA), a pentacyclic triterpenoid derived from medicinal herbs, has anticancer activity. Studies on the molecular mechanism underlying UA's anticancer activity are ongoing. Here, we demonstrated UA's anticancer activity and the underlying signaling mechanisms. We used Western blotting and real-time quantitative polymerase chain reaction for molecular signaling analysis. We also used in vitro angiogenesis, wound healing, and invasion assays to study UA's anticancer activity. In addition, we used tumorsphere formation and chromatin immunoprecipitation assays for binding studies. The results showed that UA inhibited the proliferation of A549 and H460 cells in a concentration-dependent manner. UA exerted anticancer effects by inducing G0/G1 cell cycle arrest and apoptosis. It also inhibited tumor angiogenesis, migration, invasion, and tumorsphere formation. The molecular mechanism underlying UA activity involves UA's binding to epidermal growth factor receptor (EGFR), reducing the level of phospho-EGFR, and thus inhibiting the downstream JAK2/STAT3 pathway. Furthermore, UA reduced the expressions of vascular endothelial growth factor (VEGF), metalloproteinases (MMPs) and programmed death ligand-1 (PD-L1), as well as the formation of STAT3/MMP2 and STAT3/PD-L1 complexes. Altogether, UA exhibits anticancer activities by inhibiting MMP2 and PD-L1 expression through EGFR/JAK2/STAT3 signaling.

13.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925065

ABSTRACT

Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Catechols/pharmacology , Fatty Alcohols/pharmacology , Apoptosis/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , ErbB Receptors/metabolism , Female , Zingiber officinale/chemistry , Humans , MCF-7 Cells , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Tumor Suppressor Protein p53/metabolism , src-Family Kinases/metabolism
14.
Asian-Australas J Anim Sci ; 34(1): 134-142, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31011008

ABSTRACT

Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using qRT-PCR. Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

15.
Anticancer Res ; 40(9): 5191-5200, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32878807

ABSTRACT

BACKGROUND/AIM: Colorectal cancer is one of the most common malignancies worldwide. Small molecule-based chemotherapy is an attractive approach for the chemoprevention and treatment of colorectal cancer. Methylsulfonylmethane (MSM) is a natural organosulfur compound with anticancer properties, as revealed by studies on in vitro models of gingival, prostate, lung, hepatic, and breast cancer. However, the molecular mechanisms underlying the effects of MSM in colon cancer cells remain unclear. MATERIALS AND METHODS: Here, we investigated the effects of MSM, especially on the cell cycle arrest and apoptosis, in HT-29 cells. RESULTS: MSM suppressed the viability of HT-29 cells by inducing apoptosis and cell cycle arrest at the G0/G1 phase. MSM suppressed the sphere-forming ability and expression of stemness markers in HT-29 cells. CONCLUSION: MSM has anti-cancer effects on HT-29 cells, and induces cell cycle arrest and apoptosis, while suppressing the stemness potential.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Self Renewal/drug effects , Dimethyl Sulfoxide/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Sulfones/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , HT29 Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Spheroids, Cellular , Tumor Cells, Cultured
16.
Anticancer Res ; 40(6): 3209-3220, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32487615

ABSTRACT

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is one among the most common cancers worldwide. Recently, dietary phytochemicals have been reported as an attractive approach to improve the symptoms of NSCLC patients. Tannic acid is a natural polyphenol, which is known to have anticancer effects on in vitro models of breast, gingival and colon cancer. However, the molecular mechanisms associated with the actions of tannic acid on A549 human lung cancer cells have not been elucidated. MATERIALS AND METHODS: In this study, we analyzed the effect of tannic acid on A549 cells and their underlying mechanisms using western blotting, flow cytometry, invasion assay and tumorsphere formation assay. RESULTS: Tannic acid treatment suppressed the viability of A549 cells through cell cycle arrest and induction of the intrinsic pathways of apoptosis. In addition, the various malignant phenotypes of A549 cells including invasion, migration, and stemness were inhibited by tannic acid treatment. CONCLUSION: Tannic acid could be used as an effective inhibitor of lung cancer progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Lung Neoplasms/drug therapy , Tannins/therapeutic use , A549 Cells , Apoptosis , Cell Line, Tumor , Humans , Signal Transduction , Tannins/pharmacology
17.
Molecules ; 25(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429534

ABSTRACT

High glucose-induced inflammation leads to atherosclerosis, which is considered a major cause of death in type 1 and type 2 diabetic patients. Nuclear factor-kappa B (NF-κB) plays a central role in high glucose-induced inflammation and is activated through toll-like receptors (TLRs) as well as canonical and protein kinase C-dependent (PKC) pathways. Non-toxic sulfur (NTS) and methylsulfonylmethane (MSM) are two sulfur-containing natural compounds that can induce anti-inflammation. Using Western blotting, real-time polymerase chain reaction, and flow cytometry, we found that high glucose-induced inflammation occurs through activation of TLRs. An effect of NTS and MSM on canonical and PKC-dependent NF-κB pathways was also demonstrated by western blotting. The effects of proinflammatory cytokines were investigated using a chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. Our results showed inhibition of the glucose-induced expression of TLR2 and TLR4 by NTS and MSM. These sulfur compounds also inhibited NF-κB activity through reactive oxygen species (ROS)-mediated canonical and PKC-dependent pathways. Finally, NTS and MSM inhibited the high glucose-induced expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and binding of NF-κB protein to the DNA of proinflammatory cytokines. Together, these results suggest that NTS and MSM may be potential drug candidates for anti-inflammation therapy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Dimethyl Sulfoxide/pharmacology , Glucose/pharmacology , NF-kappa B/genetics , Signal Transduction/drug effects , Sulfones/pharmacology , Gene Expression Regulation , Humans , Inflammation/prevention & control , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mannitol/pharmacology , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , THP-1 Cells , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Anticancer Res ; 40(4): 1905-1913, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32234879

ABSTRACT

BACKGROUND/AIM: Methylsulfonylmethane (MSM) is a natural organic compound that displays anti-inflammatory as well as antioxidant properties. MSM reportedly has potential in inhibition of tumor cells. However, molecular mechanisms underlying the effects of MSM on lung cancer remain unclear. MATERIALS AND METHODS: In this study, the effect of MSM on A549 cells was examined. We focused on the mode of apoptosis induced by MSM and investigated alterations in the integrity of the outer membrane of mitochondria. RESULTS: Our results showed that MSM inhibited viability of A549 cells and changed the shape and permeability of nuclei. In addition, MSM induced G2/M arrest. MSM reduced the mitochondrial membrane potential and contributed to release of cytochrome c from mitochondria to cytoplasm. CONCLUSION: MSM is a potential anticancer agent for the treatment of lung cancer.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Dimethyl Sulfoxide/pharmacology , Lung Neoplasms/drug therapy , Sulfones/pharmacology , A549 Cells , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Signal Transduction/drug effects
19.
Sci Rep ; 10(1): 4481, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161317

ABSTRACT

Severe acute respiratory syndrome coronavirus nonstructural protein 13 (SCV nsP13), a superfamily 1 helicase, plays a central role in viral RNA replication through the unwinding of duplex RNA and DNA with a 5' single-stranded tail in a 5' to 3' direction. Despite its putative role in viral RNA replication, nsP13 readily unwinds duplex DNA by cooperative translocation. Herein, nsP13 exhibited different characteristics in duplex RNA unwinding than that in duplex DNA. nsP13 showed very poor processivity on duplex RNA compared with that on duplex DNA. More importantly, nsP13 inefficiently unwinds duplex RNA by increasing the 5'-ss tail length. As the concentration of nsP13 increased, the amount of unwound duplex DNA increased and that of unwound duplex RNA decreased. The accumulation of duplex RNA/nsP13 complexes increased as the concentration of nsP13 increased. An increased ATP concentration in the unwinding of duplex RNA relieved the decrease in duplex RNA unwinding. Thus, nsP13 has a strong affinity for duplex RNA as a substrate for the unwinding reaction, which requires increased ATPs to processively unwind duplex RNA. Our results suggest that duplex RNA is a preferred substrate for the helicase activity of nsP13 than duplex DNA at high ATP concentrations.


Subject(s)
Adenosine Triphosphate/metabolism , Methyltransferases/metabolism , RNA Helicases/metabolism , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Nonstructural Proteins/metabolism , DNA/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , DNA, Viral/metabolism , DNA-Binding Proteins/metabolism , Hydrolysis , Kinetics , Protein Binding , RNA-Binding Proteins/metabolism , Substrate Specificity , Virus Replication/physiology
20.
Cancers (Basel) ; 12(3)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204508

ABSTRACT

Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear-cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...