Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 33(7): 1697-1705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623440

ABSTRACT

Mast cells have a detrimental impact on coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sambou Bamboo salt™ (BS) suppresses mast cell-mediated inflammatory response and enhances immunity. In this study, we investigated the regulatory effects of BS on expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease/serine subfamily member 2 (TMPRSS2) in human mast cell line (HMC)-1 cells. BS resulted in significant reductions in expression levels of ACE2 and TMPRSS2 in activated HMC-1 cells. Levels of tryptase were reduced by BS. In addition, BS blocked activation of activator protein 1 (AP-1), c-Jun NH2-terminal kinases (JNK), p38, and phosphatidylinositide-3-kinase (PI3K) in activated HMC-1 cells. Therefore, these results show that BS reduces levels of ACE2, TMPRSS2, and tryptase by inhibiting AP-1/JNK/p38/PI3K signaling pathways in mast cells. These findings can serve as valuable foundational data for the development of therapeutic agents aimed at preventing SARS-CoV-2 infection.

2.
In Vitro Cell Dev Biol Anim ; 60(2): 195-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228999

ABSTRACT

Eunkyo-san is widely used in the treatment of severe respiratory infections. Mast cells not only serve as host cells for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but also they also exacerbate Coronavirus disease in 2019 (COVID-19) by causing a cytokine storm. Here we investigated whether Eunkyo-san and its active compound naringenin regulate the expression of inflammatory cytokines and factors connected to viral infection in activated human mast cell line, HMC-1 cells. Eunkyo-san and naringenin significantly reduced levels of inflammatory cytokines including interleukin (IL)-1ß, IL-6, IL-8, thymic stromal lymphopoietin, and tumor necrosis factor-α without impacting cytotoxicity. Eunkyo-san and naringenin reduced levels of factors connected to SARS-CoV-2 infection such as angiotensin-converting enzyme 2 (ACE2, SARS-CoV-2 receptor), transmembrane protease/serine subfamily member 2, and tryptase in activated HMC-1 cells. Treatment with Eunkyo-san and naringenin considerably reduced expression levels of ACE2 transcription factor, AP-1 (C-JUN and C-FOS) by blocking phosphatidylinositide-3-kinase and c-Jun NH2-terminal kinases signaling pathways. In addition, Eunkyo-san and naringenin effectively suppressed activation of signal transducer and activator of transcription 3, nuclear translocation of nuclear factor-κB, and activation of caspase-1 in activated HMC-1 cells. Furthermore, Eunkyo-san and naringenin reduced expression of ACE2 mRNA in two activated mast cell lines, RBL-2H3 and IC-2 cells. The overall study findings showed that Eunkyo-san diminished the expression levels of inflammatory cytokines and ACE2, and these findings imply that Eunkyo-san is able to effectively mitigating the cytokine storm brought on by SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cytokines , Humans , Animals , Cytokines/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , Cytokine Release Syndrome/metabolism , Mast Cells , SARS-CoV-2
3.
Nutr Res Pract ; 17(4): 670-681, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529263

ABSTRACT

BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

4.
Int Immunopharmacol ; 123: 110742, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536185

ABSTRACT

The anti-cancer impact of an allergic reaction is strongly linked to immunity enhancement. Trimethoprim-sulfamethoxazole (TMP-SMX), an antibiotic, has potential immunomodulatory effects, but has side effects such as allergies. Thus far, the effects and underlying mechanisms of TMP-SMX in melanoma have not been clarified. This study examined the potential roles of TMP-SMX in melanoma skin cancer using an immunodeficient mouse model. TMP-SMX significantly improved the survival rate and reduced the tumor weight and growth and vascular endothelial growth factor levels in melanoma skin cancer of immunodeficient mice. In the forced swimming test, TMP-SMX significantly reduced immobility time compared to the melanoma skin cancer of immunodeficient mice, indicating improved immunity. TMP-SMX significantly increased infiltration of mast cells and release of allergy-related mediators (IgE, histamine, interleukin (IL)-4, IL-5, IL-13, and IL-33) and immune-enhancing mediators (tumor necrosis factor-α, IL-2, IL-6, and IL-12). In addition, the administration of TMP-SMX significantly increased the caspase-3, 8, and 9 activities. Furthermore, mice given TMP-SMX showed no adverse reactions according to the blood biochemical parameters. TMP-SMX significantly inhibits the growth of melanoma skin cancer by triggering an allergic reaction and promotingimmunity. Hence, we propose that TMP-SMX may be used as an immune booster in cancer chemotherapy.


Subject(s)
Hypersensitivity , Melanoma , Skin Neoplasms , Animals , Mice , Trimethoprim, Sulfamethoxazole Drug Combination/adverse effects , Vascular Endothelial Growth Factor A , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Skin Neoplasms/chemically induced , Melanoma, Cutaneous Malignant
5.
Chemosphere ; 335: 139032, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37236275

ABSTRACT

Although spectroscopic methods provide a fast and cost-effective means of monitoring dissolved organic carbon (DOC) in natural and engineered water systems, the prediction accuracy of these methods is limited by the complex relationship between optical properties and DOC concentration. In this study, we developed DOC prediction models using multiple linear/log-linear regression and feedforward artificial neural network (ANN) and investigated the effectiveness of spectroscopic properties, such as fluorescence intensity and UV absorption at 254 nm (UV254), as predictors. Optimum predictors were identified based on correlation analysis to construct models using single and multiple predictors. We compared the peak-picking and parallel factor analysis (PARAFAC) methods for selecting appropriate fluorescence wavelengths. Both methods had similar prediction capability (p-values >0.05), suggesting PARAFAC was not necessary for choosing fluorescence predictors. Fluorescence peak T was identified as a more accurate predictor than UV254. Combining UV254 and multiple fluorescence peak intensities as predictors further improved the prediction capability of the models. The ANN models outperformed the linear/log-linear regression models with multiple predictors, achieving higher prediction accuracy (peak-picking: R2 = 0.8978, RMSE = 0.3105 mg/L; PARAFAC: R2 = 0.9079, RMSE = 0.2989 mg/L). These findings suggest the potential to develop a real-time DOC concentration sensor based on optical properties using an ANN for signal processing.


Subject(s)
Water Pollutants, Chemical , Water Purification , Dissolved Organic Matter , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Water
6.
Cell Immunol ; 386: 104705, 2023 04.
Article in English | MEDLINE | ID: mdl-36898276

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection activates mast cells and induces a cytokine storm, leading to severe Coronavirus disease in 2019 (COVID-19). SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) for cell entry. In the present study, the expression of ACE2 and its mechanism in activated mast cells were studied utilizing the human mast cell line, HMC-1 cells and it was elucidated whether dexamethasone used as a treatment for COVID-19 could regulate ACE2 expression. Here we documented for the first time that levels of ACE2 were increased by stimulation of phorbol 12-myristate 13-acetate and A23187 (PMACI) in HMC-1 cells. Increased levels of ACE2 were significantly diminished by treatment with Wortmannin, SP600125, SB203580, PD98059, or SR11302. The expression of ACE2 was most significantly reduced by the activating protein (AP)-1 inhibitor SR11302. PMACI stimulation enhanced the expression of the transcription factor AP-1 for ACE2. In addition, levels of transmembrane protease/serine subfamily member 2 (TMPRSS2) and tryptase were increased in PMACI-stimulated HMC-1 cells. However, dexamethasone significantly lowered levels of ACE2, TMPRSS2, and tryptase generated by PMACI. Treatment with dexamethasone also reduced activation of signaling molecules linked to ACE2 expression. According to these findings, levels of ACE2 were up-regulated through activation of AP-1 in mast cells, suggesting that suppressing ACE2 levels in mast cells would be a therapeutic approach to lessen the harm caused by COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Dexamethasone/pharmacology , Mast Cells/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Transcription Factor AP-1 , Tryptases
7.
Food Sci Biotechnol ; 32(8): 1101-1109, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36683865

ABSTRACT

One of the interfering factors in Coronavirus disease 2019 (COVID-19) is the cytokine storm, which contributes to hyperinflammation. Mast cells cause COVID-19 hyperinflammation by increasing inflammatory cytokine levels. We investigated whether caudatin, an active compound of Cynanchum auriculatum, could suppress inflammatory response signaling in human mast cell line, HMC-1 cells. Caudatin suppressed activation of c-Jun N-terminal kinase (JNK) and activator protein-1 (AP-1) in HMC-1 cells. Caudatin suppressed nuclear translocation of catalytic subunit (p65) of nuclear factor (NF)-κB by blocking IκBα phosphorylation and degradation. Caudatin also reduced levels of activated-caspase-1 protein and activation of caspase-1. Non-toxic caudatin doses inhibited the mRNA expression and protein synthesis of pro-inflammatory cytokines. A significant finding was that caudatin inhibited JNK/AP-1/NF-κB/caspase-1 signaling molecules, reducing the secretion of inflammatory cytokines. Consequently, we propose that caudatin might be used as a material in health functional foods to alleviate mast cell-mediated inflammatory conditions like COVID-19.

8.
Reprod Sci ; 30(5): 1625-1636, 2023 05.
Article in English | MEDLINE | ID: mdl-36333646

ABSTRACT

Cynanchum wilfordii and Humulus lupulus L. have been used for their various pharmacological properties in South Korea as a traditional medicine or health functional food, respectively, and their intake may relieve menopausal symptoms. The purpose of current study was to determine the effect of compound of Cynanchum wilfordii and Humulus lupulus L. (CWHL) in menopausal symptoms of ovariectomized (OVX) mice. OVX mice received CWHL or caudatin (an active ingredient of CWHL) once daily for 7 weeks. Values for hypothalamic serotonin (5-HT), dopamine, norepinephrine, estrogen receptor (ER)-ß, 5-HT1A, and 5-HT2A were significantly enhanced, while value for hypothalamic monoamine oxidase A was reduced in CWHL and caudatin groups compared with the OVX group. CWHL and caudatin significantly reduced tail skin temperature and rectal temperature of OVX mice through partial recovering of the levels of serum estrogen, nitric oxide, follicle-stimulating hormone, luteinizing hormone, and receptor-activator of the NF-κB ligand (RANKL). Moreover, CWHL and caudatin improved bone mineral density via decreasing levels of serum RANKL, tartrate-resistant acid phosphatase, and collagen type 1 cross-linked N-telopeptide and improving levels of serum alkaline phosphatase, osteoprotegerin, and osteocalcin compared with the OVX group without adverse effects such as dyslipidemia. CWHL increased uterine ER-ß levels but did not change uterus and vaginal weights. Taken together, the results indicate that CWHL may relieve menopausal symptoms by controlling depression-, hot flashes-, and osteoporosis-associated biomarkers. Therefore, we propose that CWHL might be a safe and potential candidate for management of menopause as a health functional food.


Subject(s)
Cynanchum , Humulus , Female , Mice , Animals , Humans , Humulus/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Bone Density , Menopause , Ovariectomy
9.
Cytokine ; 159: 156018, 2022 11.
Article in English | MEDLINE | ID: mdl-36054965

ABSTRACT

An increase in the number of mast cells could contribute to inflammatory diseases and pathologic conditions. A receptor activator of NF-κB ligand (RANKL)/RANK system is one of the key signaling pathways accelerating mast cell-mediated allergic inflammatory reactions. However, the biological functions of RANKL in mast cell proliferation remains to be clarified. The aim of the present study is to clarify the role of RANKL in mast cell proliferation. Surprisingly, RANKL remarkably reduced the proliferation of human mast cell line, HMC-1 cells through the inhibition of murine double minute 2 (MDM2) and Ki-67 mRNA expressions in a dose-dependent manner. RANKL significantly reduced cell viability, whereas it increased cellular senescence via increasing levels of p53, phosphorylated(p)-p53, p21, and p16 and decreasing levels of retinoblastoma protein (pRb) and p-pRb in HMC-1 cells. Even in rat peritoneal mast cells, RANKL induced cellular senescence by increasing filamentous-actin polymerization. In addition, RANKL remarkably reduced thymic stromal lymphopoietin (TSLP)-induced mast cell proliferation via the downregulation of MDM2 and Ki-67. RANKL decreased levels of p-signal transducer and activator of transcription 6 in TSLP-stimulated HMC-1 cells. The mast cell growth factor, interleukin-13 was remarkably down-regulated by treatment with RANKL in TSLP-stimulated HMC-1 cells. Furthermore, RANKL increased the number of senescence-associated ß-galactosidase-stained cells and protein levels of p53, p-p53, and p21 in TSLP-stimulated HMC-1 cells. These data suggest that RANKL down-regulates mast cell proliferation by inducing senescence.


Subject(s)
Interleukin-13 , Proto-Oncogene Proteins c-mdm2 , Actins/metabolism , Animals , Cell Proliferation , Cytokines/metabolism , Humans , Interleukin-13/metabolism , Ki-67 Antigen/metabolism , Ligands , Mast Cells/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , RANK Ligand , RNA, Messenger/metabolism , Rats , Receptor Activator of Nuclear Factor-kappa B/metabolism , Retinoblastoma Protein , STAT6 Transcription Factor/metabolism , Stem Cell Factor , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/metabolism
10.
Int Immunopharmacol ; 88: 106872, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32769069

ABSTRACT

Receptor activator of NF-κB ligand (RANKL) as an osteoclast differentiation factor induces inflammatory reactions via production of thymic stromal lymphopoietin (TSLP). Epigallocatechin gallate (EGCG) is the major and the most active compound in green tea and has anti-inflammatory, anti-cancer, anti-oxidant, and neuroprotective effects. However, the effect and molecular mechanisms of EGCG are still unknown in RANKL-induced inflammatory reactions. Here we investigated the immuno-regulatory effects and its molecular mechanisms of epigallocatechin gallate (EGCG) in RANKL-stimulated human mast cell line, HMC-1 cells. In this study, EGCG prevented expression of PI3 Kinase and phosphorylation of mitogen-activated protein (MAP) Kinases in RANKL-stimulated HMC-1 cells. EGCG prevented caspase-1 activity and decreased transcriptional activity of nuclear factor (NF)-κB by suppressing inhibitory protein κBα phosphorylation in RANKL-stimulated HMC-1 cells. EGCG has been shown to prevent production and mRNA expression of TSLP, interleukin (IL)-1ß, IL-6, and IL-8 by RANKL without cytotoxicity. Furthermore, EGCG prevented degranulation of mast cell in RANKL-stimulated HMC-1 cells. Overall, these results suggest that EGCG acts as a natural agent for preventing and treating RANKL-mediated inflammatory diseases by targeting PI3 Kinase, MAP Kinase, caspase-1, and NF-κB signaling cascade in mast cells.


Subject(s)
Catechin/analogs & derivatives , Inflammation/metabolism , Mast Cells/drug effects , RANK Ligand/antagonists & inhibitors , Signal Transduction/drug effects , Caspase 1/drug effects , Caspase 1/metabolism , Catechin/pharmacology , Cell Line , Cell Survival/drug effects , Cytokines/drug effects , Cytokines/metabolism , Elafin/drug effects , Elafin/metabolism , Histamine/metabolism , Humans , Inflammation/chemically induced , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-8/drug effects , Interleukin-8/metabolism , Mast Cells/metabolism , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , RANK Ligand/adverse effects , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...