Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Nucleic Acids Res ; 52(7): 3794-3809, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38340339

ABSTRACT

Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.


Subject(s)
Crossing Over, Genetic , DNA Breaks, Double-Stranded , Meiosis , Rad52 DNA Repair and Recombination Protein , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Recombination, Genetic , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Homologous Recombination/genetics
2.
ACS Appl Bio Mater ; 7(1): 1-16, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38079575

ABSTRACT

Cell-penetrating peptides (CPPs) consist of 5-30 amino acids with intracellular transduction abilities and diverse physicochemical properties, origins, and sequences. Although recent developments in bioinformatics have facilitated the prediction of CPP candidates with the potential for transduction into cells, the mechanisms by which CPPs penetrate cells and various tissues have not yet been elucidated at the molecular interaction level. Recently, the skin-penetrating ability of CPPs has gained wide attention and emerged as a simple and effective strategy for the delivery of macromolecules into the skin. Studies on the skin structure have suggested that the penetration potential of CPPs is based on the molecular interactions and characteristics of the lipid lamellar structure between corneocytes in the stratum corneum. This review provides a brief overview of the general properties, transduction mechanisms, applications, and safety issues of CPPs, focusing on CPPs with transdermal properties, that are currently being used to develop therapeutics and cosmetics.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/chemistry , Cell Membrane/chemistry , Skin/metabolism , Amino Acids
3.
Microb Biotechnol ; 16(11): 2161-2180, 2023 11.
Article in English | MEDLINE | ID: mdl-37837246

ABSTRACT

The industrial potential of Saccharomyces cerevisiae has extended beyond its traditional use in fermentation to various applications, including recombinant protein production. Herein, comparative genomics was performed with three industrial S. cerevisiae strains and revealed a heterozygous diploid genome for the 98-5 and KSD-YC strains (exploited for rice wine fermentation) and a haploid genome for strain Y2805 (used for recombinant protein production). Phylogenomic analysis indicated that Y2805 was closely associated with the reference strain S288C, whereas KSD-YC and 98-5 were grouped with Asian and European wine strains, respectively. Particularly, a single nucleotide polymorphism (SNP) in FDC1, involved in the biosynthesis of 4-vinylguaiacol (4-VG, a phenolic compound with a clove-like aroma), was found in KSD-YC, consistent with its lack of 4-VG production. Phenotype microarray (PM) analysis showed that KSD-YC and 98-5 displayed broader substrate utilization than S288C and Y2805. The SNPs detected by genome comparison were mapped to the genes responsible for the observed phenotypic differences. In addition, detailed information on the structural organization of Y2805 selection markers was validated by Sanger sequencing. Integrated genomics and PM analysis elucidated the evolutionary history and genetic diversity of industrial S. cerevisiae strains, providing a platform to improve fermentation processes and genetic manipulation.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Fermentation , Genomics , Phenotype , Microarray Analysis
4.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36746534

ABSTRACT

Assembling fragmented whole-genomic information from the sequencing data is an inevitable process for further genome-wide research. However, it is intricate to select the appropriate assembly pipeline for unknown species because of the species-specific genomic properties. Therefore, our study focused on relatively more static proclivities of sequencing platforms and assembly algorithms than the fickle genome sequences. A total of 212 draft and polished de novo assemblies were constructed under the different sequencing platforms and assembly algorithms with the repetitive yeast genome. Our comprehensive data indicated that sequencing reads from Oxford Nanopore with R7.3 flow cells generated more continuous assemblies than those derived from the PacBio Sequel, although the homopolymer-based assembly errors and chimeric contigs exist. In addition, the comparison between two second-generation sequencing platforms showed that Illumina NovaSeq 6000 provides more accurate and continuous assembly in the second-generation-sequencing-first pipeline, but MGI DNBSEQ-T7 provides a cheap and accurate read in the polishing process. Furthermore, our insight into the relationship among the computational time, read length, and coverage depth provided clues to the optimal pipelines of yeast assembly.


Subject(s)
Genome , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Genomics , High-Throughput Nucleotide Sequencing , Algorithms
5.
Sci Rep ; 13(1): 1175, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670130

ABSTRACT

Cryptococcus neoformans is an opportunistic human fungal pathogen causing lethal meningoencephalitis. It has several cell wall mannoproteins (MPs) identified as immunoreactive antigens. To investigate the structure and function of N-glycans assembled on cryptococcal cell wall MPs in host cell interactions, we purified MP98 (Cda2) and MP84 (Cda3) expressed in wild-type (WT) and N-glycosylation-defective alg3 mutant (alg3Δ) strains. HPLC and MALDI-TOF analysis of the MP proteins from the WT revealed protein-specific glycan structures with different extents of hypermannosylation and xylose/xylose phosphate addition. In alg3Δ, MP98 and MP84 had truncated core N-glycans, containing mostly five and seven mannoses (M5 and M7 forms), respectively. In vitro adhesion and uptake assays indicated that the altered core N-glycans did not affect adhesion affinities to host cells although the capacity to induce the immune response of bone-marrow derived dendritic cells (BMDCs) decreased. Intriguingly, the removal of all N-glycosylation sites on MP84 increased adhesion to host cells and enhanced the induction of cytokine secretion from BMDCs compared with that on MP84 carrying WT N-glycans. Therefore, the structure-dependent effects of N-glycans suggested their complex roles in modulating the interaction of MPs with host cells to avoid nonspecific adherence to host cells and host immune response hyperactivation.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Cryptococcus neoformans/metabolism , Xylose/metabolism , Cryptococcosis/microbiology , Polysaccharides/metabolism , Mannosyltransferases/metabolism
6.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-36564017

ABSTRACT

In this review, we describe the genomic and physiological features of the yeast species predominantly isolated from Nuruk, a starter for traditional Korean rice wines, and Jang, a traditional Korean fermented soy product. Nuruk and Jang have several prevalent yeast species, including Saccharomycopsis fibuligera, Hyphopichia burtonii, and Debaryomyces hansenii complex, which belong to the CUG clade showing high osmotic tolerance. Comparative genomics revealed that the interspecies hybridization within yeast species for generating heterozygous diploid genomes occurs frequently as an evolutional strategy in the fermentation environment of Nuruk and Jang. Through gene inventory analysis based on the high-quality reference genome of S. fibuligera, new genes involved in cellulose degradation and volatile aroma biosynthesis and applicable to the production of novel valuable enzymes and chemicals can be discovered. The integrated genomic and transcriptomic analysis of Hyphopichia yeasts, which exhibit strong halotolerance, provides insights into the novel mechanisms of salt and osmo-stress tolerance for survival in fermentation environments with a low-water activity and high-concentration salts. In addition, Jang yeast isolates, such as D. hansenii, show probiotic potential for the industrial application of yeast species beyond fermentation starters to diverse human health sectors.


Subject(s)
Glycine max , Wine , Humans , Phylogeny , Yeasts/genetics , Fermentation , Genomics , Republic of Korea
7.
mBio ; 13(6): e0211222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36409123

ABSTRACT

The human-pathogenic yeast Cryptococcus neoformans assembles two types of O-linked glycans on its proteins. In this study, we identified and functionally characterized the C. neoformans CAP6 gene, encoding an α1,3-mannosyltransferase responsible for the second mannose addition to minor O-glycans containing xylose in the Golgi apparatus. Two cell surface sensor proteins, Wml1 (WSC/Mid2-like) and Wml2, were found to be independent substrates of Cap6-mediated minor or Ktr3-mediated major O-mannosylation, respectively. The double deletion of KTR3 and CAP6 (ktr3Δ cap6Δ) completely blocked the mannose addition at the second position of O-glycans, resulting in the accumulation of proteins with O-glycans carrying only a single mannose. Tunicamycin (TM)-induced phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) was greatly decreased in both ktr3Δ cap6Δ and wml1Δ wml2Δ strains. Transcriptome profiling of the ktr3Δ cap6Δ strain upon TM treatment revealed decreased expression of genes involved in the Mpk1-dependent cell wall integrity (CWI) pathway. Consistent with its defective growth under several stress conditions, the ktr3Δ cap6Δ strain was avirulent in a mouse model of cryptococcosis. Associated with this virulence defect, the ktr3Δ cap6Δ strain showed decreased adhesion to lung epithelial cells, decreased proliferation within macrophages, and reduced transcytosis of the blood-brain barrier (BBB). Notably, the ktr3Δ cap6Δ strain showed reduced induction of the host immune response and defective trafficking of ergosterol, an immunoreactive fungal molecule. In conclusion, O-glycan extension in the Golgi apparatus plays critical roles in various pathobiological processes, such as CWI signaling and stress resistance and interaction with host cells in C. neoformans. IMPORTANCE Cryptococcus neoformans assembles two types of O-linked glycans on its surface proteins, the more abundant major O-glycans that do not contain xylose residues and minor O-glycans containing xylose. Here, we demonstrate the role of the Cap6 α1,3-mannosyltransferase in the synthesis of minor O-glycans. Previously proposed to be involved in capsule biosynthesis, Cap6 works with the related Ktr3 α1,2-mannosyltransferase to synthesize O-glycans on their target proteins. We also identified two novel C. neoformans stress sensors that require Ktr3- and Cap6-mediated posttranslational modification for full function. Accordingly, the ktr3Δ cap6Δ double O-glycan mutant strain displays defects in stress signaling pathways, CWI, and ergosterol trafficking. Furthermore, the ktr3Δ cap6Δ strain is completely avirulent in a mouse infection model. Together, these results demonstrate critical roles for O-glycosylation in fungal pathogenesis. As there are no human homologs for Cap6 or Ktr3, these fungus-specific mannosyltransferases are novel targets for antifungal therapy.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Animals , Mice , Humans , Cryptococcus neoformans/genetics , Glycosylation , Mannosyltransferases/metabolism , Xylose/metabolism , Mannose , Cryptococcosis/microbiology , Polysaccharides/metabolism , Cell Wall/metabolism , Golgi Apparatus/metabolism , Fungal Proteins/genetics
8.
Med Mycol ; 60(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35943215

ABSTRACT

Ferritin, a major iron storage protein in vertebrates, supplies iron upon iron deficiency. Ferritin is also found extracellularly, and acts as an iron carrier and a contributor to the immune response to invading microbes. Some microbial pathogens take advantage of ferritin as an iron source upon infection. However, no information is currently available on whether the human fungal pathogen Cryptococcus neoformans can acquire iron from ferritin. Here, we found that C. neoformans grew well in the presence of ferritin as a sole iron source. We showed that the binding of ferritin to the surface of C. neoformans is necessary and that acidification may contribute to ferritin-iron utilization by the fungus. Our data also revealed that the high-affinity reductive iron uptake system in C. neoformans is required for ferritin-iron acquisition. Furthermore, phagocytosis of C. neoformans by macrophages led to increased intracellular ferritin levels, suggesting that iron is sequestered by ferritin in infected macrophages. The increase in intracellular ferritin levels was reversed upon infection with a C. neoformans mutant deficient in the high-affinity reductive iron uptake system, indicating that this system plays a major role in iron acquisition in the phagocytosed C. neoformans in macrophages. LAY SUMMARY: Cryptococcus neoformans is an opportunistic fungal pathogen causing life-threatening pulmonary disease and cryptococcal meningitis, mainly in immunocompromised patients. In this study, we found that C. neoformans can use ferritin, a major iron storage protein in vertebrates, as a sole iron source.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Animals , Iron/metabolism , Ferritins/metabolism , Cryptococcosis/microbiology , Cryptococcosis/veterinary , Phagocytosis
9.
Sci Rep ; 12(1): 10853, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760980

ABSTRACT

The skin has a protective barrier against the external environment, making the transdermal delivery of active macromolecules very difficult. Cell-penetrating peptides (CPPs) have been accepted as useful delivery tools owing to their high transduction efficiency and low cytotoxicity. In this study, we evaluated the hydrophobic peptide, macromolecule transduction domain 1067 (MTD 1067) as a CPP for the transdermal delivery of protein cargoes of various sizes, including growth hormone-releasing hexapeptide-6 (GHRP-6), a truncated form of insulin-like growth factor-I (des(1-3)IGF-I), and platelet-derived growth factor BB (PDGF-BB). The MTD 1067-conjugated GHRP-6 (MTD-GHRP-6) was chemically synthesized, whereas the MTD 1067-conjugated des(1-3)IGF-I and PDGF-BB proteins (MTD-des(1-3)IGF-I and MTD-PDGF-BB) were generated as recombinant proteins. All the MTD 1067-conjugated cargoes exhibited biological activities identical or improved when compared to those of the original cargoes. The analysis of confocal microscopy images showed that MTD-GHRP-6, MTD-des(1-3)IGF-I, and MTD-PDGF-BB were detected at 4.4-, 18.8-, and 32.9-times higher levels in the dermis, respectively, compared to the control group without MTD. Furthermore, the MTD 1067-conjugated cargoes did not show cytotoxicity. Altogether, our data demonstrate the potential of MTD 1067 conjugation in developing functional macromolecules for cosmetics and drugs with enhanced transdermal permeability.


Subject(s)
Cell-Penetrating Peptides , Insulin-Like Growth Factor I , Becaplermin , Insulin-Like Growth Factor I/metabolism , Proto-Oncogene Proteins c-sis , Recombinant Proteins
10.
Food Microbiol ; 105: 104011, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35473972

ABSTRACT

Fermented soybean products are gaining attention in the food industry owing to their nutritive value and health benefits. In this study, we performed genomic analysis and physiological characterization of two Debaryomyces spp. yeast isolates obtained from a Korean traditional fermented soy sauce "ganjang". Both Debaryomyces hansenii ganjang isolates KD2 and C11 showed halotolerance to concentrations of up to 15% NaCl and improved growth in the presence of salt. Ploidy and whole-genome sequencing analyses indicated that the KD2 genome is haploid, whereas the C11 genome is heterozygous diploid with two distinctive subgenomes. Interestingly, phylogenetic analysis using intron sequences indicated that the C11 strain was generated via hybridization between D. hansenii and D. tyrocola ancestor strains. The D. hansenii KD2 and D. hansenii-hybrid C11 produced various volatile flavor compounds associated with butter, caramel, cheese, and fruits, and showed high bioconversion activity from ferulic acid to 4-vinylguaiacol, a characteristic flavor compound of soybean products. Both KD2 and C11 exhibited viability in the presence of bile salts and at low pH and showed immunomodulatory activity to induce high levels of the anti-inflammatory cytokine IL-10. The safety of the yeast isolates was confirmed by analyzing virulence and acute oral toxicity. Together, the D. hansenii ganjang isolates possess physiological properties beneficial for improving the flavor and nutritional value of fermented products.


Subject(s)
Cheese , Debaryomyces , Fabaceae , Probiotics , Saccharomycetales , Debaryomyces/genetics , Genomics , Odorants , Phylogeny , Republic of Korea , Saccharomyces cerevisiae , Saccharomycetales/genetics , Glycine max
11.
J Microbiol ; 60(2): 177-186, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35102525

ABSTRACT

Genetic variation in eukaryotes is mediated during meiosis by the exchange of genetic material between homologous chromosomes to produce recombinant chromosomes. Cohesin is essential to promote proper chromosome segregation, chromosome morphogenesis, and recombination in meiotic cells. Cohesin consists of three main subunits-Smc1, Smc3, and the kleisin subunit Mcd1/Scc1 (Rec8 in meiosis)-and cohesin accessory factors. In Saccharomyces cerevisiae, the cohesin regulatory subunit Pds5 plays a role in homolog pairing, meiotic axis formation, and interhomolog recombination. In this study, we examine the prophase functions of Pds5 by performing physical analysis of recombination and three-dimensional high-resolution microscopy analysis to identify its roles in meiosis-specific recombination and chromosome morphogenesis. To investigate whether Pds5 plays a role in mitotic-like recombination, we inhibited Mek1 kinase activity, which resulted in switching to sister template bias by Rad51-dependent recombination. Reductions in double-strand breaks and crossover products and defective interhomolog recombination occurred in the absence of Pds5. Furthermore, recombination intermediates, including single-end invasion and double-Holliday junction, were reduced in the absence of Pds5 with Mek1 kinase inactivation compared to Mek1 kinase inactivation cells. Interestingly, the absence of Pds5 resulted in increasing numbers of chromosomes with hypercompaction of the chromosome axis. Thus, we suggest that Pds5 plays an essential role in recombination by suppressing the pairing of sister chromatids and abnormal compaction of the chromosome axis.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , MAP Kinase Kinase 1/metabolism , Meiosis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Chromosomes, Fungal , DNA, Fungal , Homologous Recombination , Prophase , Cohesins
12.
J Microbiol ; 60(1): 18-30, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34964942

ABSTRACT

We evaluated the Cre-lox and CRISPR-Cas9 systems as marker-recycling tools in Saccharomyces cerevisiae recombinants containing multiple-integrated expression cassettes. As an initial trial, we constructed rDNA-nontranscribed spacer- or Ty4-based multiple integration vectors containing the URA3 marker flanked by the loxP sequence. Integrants harboring multiple copies of tHMG1 and NNV-CP expression cassettes were obtained and subsequently transformed with the Cre plasmid. However, the simultaneous pop-out of the expression cassettes along with the URA3 marker hampered the use of Cre-lox as a marker-recycling tool in multiple integrants. As an alternative, we constructed a set of CRISPR-Cas9-gRNA vectors containing gRNA targeted to auxotrophic marker genes. Transformation of multiple integrants of tHMG1 and NNV-CP cassettes by the Cas9-gRNA vector in the presence of the URA3 (stop) donor DNA fragments generated the Ura- transformants retaining multiple copies of the expression cassettes. CRISPR-Cas9-based inactivation led to the recycling of the other markers, HIS3, LEU2, and TRP1, without loss of expression cassettes in the recombinants containing multiple copies of tHMG1, NNV-CP, and SfBGL1 cassettes, respectively. Reuse of the same selection marker in marker-inactivated S. cerevisiae was validated by multiple integrations of the TrEGL2 cassette into the S. cerevisiae strain expressing SfBGL1. These results demonstrate that introducing stop codons into selection marker genes using the CRISPR-Cas9 system with donor DNA fragments is an efficient strategy for markerrecycling in multiple integrants. In particular, the continual reuse of auxotrophic markers would facilitate the construction of a yeast cell factory containing multiple copies of expression cassettes without antibiotic resistance genes.


Subject(s)
CRISPR-Cas Systems , Saccharomyces cerevisiae/genetics , Genetic Markers , Integrases/genetics , Integrases/metabolism , Plasmids/genetics , Plasmids/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
J Microbiol ; 59(10): 911-919, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34491522

ABSTRACT

Candida albicans is an opportunistic human pathogen that exists as yeast, hyphal or pseudohyphal forms depending on pH, nutrients, and temperature. The morphological transition from yeast to hyphae, which is required for the complete virulence of C. albicans, is controlled by many transcription factors that activate or repress hypha-specific genes. The C. albicans transcriptional factor Cas5, a key regulator of genes involved in cell wall integrity, affects the susceptibility of C. albicans to fluconazole, an inhibitor of ergosterol synthesis. In this study, we found that deletion of CAS5 in C. albicans decreased the expression levels of a set of ergosterol biosynthesis genes, such as ERG2, ERG3, ERG5, ERG6, ERG11, and ERG24, resulting in the accumulation of lanosterol and zymosterol, which are intermediate metabolites in the ergosterol biosynthesis pathway. Interestingly, it was observed that the cas5Δ/Δ mutant could not maintain the yeast form under non-hypha-inducing conditions, while the CAS5-overexpressing cells could not form hyphae under hypha-inducing conditions. Consistent with these observations, the cas5Δ/Δ mutant highly expressed hypha-specific genes, ALS3, ECE1, and HWP1, under non-hypha-inducing conditions. In addition, CAS5 transcription was significantly downregulated immediately after hyphal initiation in the wild-type strain. Furthermore, the cas5Δ/Δ mutant reduced the transcription of NRG1, which encodes a major repressor of hyphal morphogenesis, while Cas5 overexpression increased the transcription of NRG1 under hypha-inducing conditions. Collectively, this study suggests the potential role of Cas5 as a repressor of hypha-specific genes during yeast-form growth of C. albicans.


Subject(s)
Candida albicans/metabolism , Hyphae/growth & development , Transcription Factors/metabolism , Candida albicans/genetics , Candida albicans/growth & development , Ergosterol/biosynthesis , Gene Expression Regulation, Fungal , Hyphae/genetics , Hyphae/metabolism , Lanosterol/biosynthesis , Morphogenesis , Transcription Factors/genetics
15.
mSystems ; 6(4): e0044121, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34342543

ABSTRACT

The taste and quality of soy sauce, a fermented liquid condiment popular worldwide, is greatly influenced by microbial metabolism during fermentation. To investigate the fermentative features of ganjang (a Korean traditional soy sauce), ganjang batches using meju (fermented soybean) bricks and solar salts were prepared, and organic compounds, microbial communities, metagenomes, and metatranscriptomes of ganjang were quantitively analyzed during fermentation. Polymeric compound analysis in the ganjang treated with/without microbial inhibitors revealed that indigenous enzymes of meju bricks might be primarily responsible for degrading polymeric compounds. Through metagenome binning and microbe sequencing, 17 high-quality genome sequences representing all major ganjang microbiota were obtained, and their transcriptional expressions were quantitatively analyzed by mapping metatranscriptome reads normalized by spike-in RNA sequencing to the 17 genomes, which revealed that microbial metabolism might primarily occur while meju bricks are in the ganjang solution and decrease significantly after the removal of meju bricks. Metabolic pathways for carbohydrates, proteins, and lipids of the major ganjang microbiota were reconstructed, and their metabolic genes were transcriptionally analyzed, revealing that facultative lactic acid fermentation by Tetragenococcus was the major fermentation process active in the ganjang fermentation and that aerobic respiration by facultatively aerobic bacteria such as Chromohalobacter, Halomonas, and Marinobacter was also an important metabolic process during fermentation. Although the abundances of Fungi and the corresponding transcriptional expression levels were generally much lower than those of Bacteria, our analysis suggests that yeasts such as Debaryomyces and Wickerhamomyces might be in large part responsible for producing biogenic amines and flavors. IMPORTANCE The taste and quality of soy sauce, a popular fermented liquid condiment worldwide, is greatly influenced by microbial metabolism during fermentation. Spontaneous fermentation of ganjang (a Korean traditional soy sauce) in a nonsterile environment leads to the growth of diverse bacteria and fungi during fermentation, making it difficult to understand the mechanism of ganjang fermentation. Genome-centered metatranscriptomic analysis, combined with organic compound analysis, quantitative metagenome and metatranscriptome analyses, and metabolic pathway reconstruction and expressional analysis of the major ganjang microbiota during fermentation, would provide comprehensive insights into the metabolic features of ganjang fermentation.

16.
J Microbiol ; 59(6): 598-608, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34052992

ABSTRACT

Aroma ester components produced by fermenting yeast cells via alcohol acetyltransferase (AATase)-catalyzed intracellular reactions are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. Acetate esters are reportedly produced at relatively high concentrations by non-Saccharomyces species. Here, we identified 12 ATF orthologues (SfATFs) encoding putative AATases, in the diploid genome of Saccharomycopsis fibuligera KJJ81, an isolate from wheat-based Nuruk in Korea. The identified SfATF proteins (SfAtfp) display low sequence identities with S. cerevisiae Atf1p (between 13.3 and 27.0%). All SfAtfp identified, except SfAtf(A)4p and SfAtf(B)4p, contained the activation domain (HXXXD) conserved in other Atf proteins. Culture supernatant analysis using headspace gas chromatography mass spectrometry confirmed that the recombinant S. cerevisiae strains expressing SfAtf(A)2p, SfAtf(B)2p, and SfAtf(B)6p produced high levels of isoamyl and phenethyl acetates. The volatile aroma profiles generated by the SfAtf proteins were distinctive from that of S. cerevisiae Atf1p, implying difference in the substrate preference. Cellular localization analysis using GFP fusion revealed the localization of SfAtf proteins proximal to the lipid particles, consistent with the presence of amphipathic helices at their N- and C-termini. This is the first report that systematically characterizes the S. fibuligera ATF genes encoding functional AATases responsible for acetate ester formation using higher alcohols as substrate, demonstrating their biotechnological potential for volatile ester production.


Subject(s)
Acetates/metabolism , Esters/metabolism , Fungal Proteins/metabolism , Proteins/metabolism , Saccharomycopsis/enzymology , Amino Acid Sequence , Fermentation , Fungal Proteins/chemistry , Fungal Proteins/genetics , Protein Domains , Protein Structure, Secondary , Proteins/chemistry , Proteins/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycopsis/chemistry , Saccharomycopsis/genetics , Saccharomycopsis/metabolism , Sequence Alignment , Wine/analysis , Wine/microbiology
17.
Environ Microbiol ; 23(7): 3499-3522, 2021 07.
Article in English | MEDLINE | ID: mdl-33830651

ABSTRACT

The yeast species Hyphopichia is common in nature and strongly competitive under harsh environmental conditions. Here, we characterized Hyphopichia burtonii KJJ43 and H. pseudoburtonii KJS14, which exhibit strong halotolerance, using genomic and transcriptomic analyses. The genomes of H. burtonii and H. pseudoburtonii comprised eight chromosomes with 85.17% nucleotide identity and significant divergence in synteny. Notably, both Hyphopichia genomes possessed extended gene families of amino acid permeases and ATP-binding cassette (ABC) transporters, whose dynamic expression patterns during osmotic stress were revealed using transcriptome profiling. Intriguingly, we found unique features of the HOG pathway activated by Hog1p even under non-osmotic stress conditions and the upregulation of cytosolic Gpd1 protein during osmotic stress. Associated with hyperfilamentation growth under high osmotic conditions, a set of genes in the FLO family with induced expression in response to NaCl, KCl, and sorbitol supplementation were identified. Moreover, comparative transcriptome analysis reveals the NaCl-specific induction of genes involved in amino acid biosynthesis and metabolism, particularly BAT2. This suggests the potential association between oxoacid reaction involving branched-chain amino acids and osmotolerance. The combined omics analysis of two Hyphopichia species provides insights into the novel mechanisms involved in salt and osmo-stress tolerance exploited by diverse eukaryotic organisms.


Subject(s)
Saccharomycetales , Transcriptome , Gene Expression Profiling , Genomics , Saccharomycetales/genetics , Transcriptome/genetics
18.
J Microbiol ; 59(2): 151-163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33527316

ABSTRACT

Ogataea parapolymorpha (Hansenula polymorpha DL-1) is a thermotolerant methylotrophic yeast with biotechnological applications. Here, O. parapolymorpha genes whose expression is induced in response to heat shock were identified by transcriptome analysis and shown to possess heat shock elements (HSEs) in their promoters. The function of O. parapolymorpha HSF1 encoding a putative heat shock transcription factor 1 (OpHsf1) was characterized in the context of heat stress response. Despite exhibiting low sequence identity (26%) to its Saccharomyces cerevisiae homolog, OpHsf1 harbors conserved domains including a DNA binding domain (DBD), domains involved in trimerization (TRI), transcriptional activation (AR1, AR2), transcriptional repression (CE2), and a C-terminal modulator (CTM) domain. OpHSF1 could complement the temperature sensitive (Ts) phenotype of a S. cerevisiae hsf1 mutant. An O. parapolymorpha strain with an H221R mutation in the DBD domain of OpHsf1 exhibited significantly retarded growth and a Ts phenotype. Intriguingly, the expression of heat-shock-protein-coding genes harboring HSEs was significantly decreased in the H221R mutant strain, even under non-stress conditions, indicating the importance of the DBD for the basal growth of O. parapolymorpha. Notably, even though the deletion of C-terminal domains (ΔCE2, ΔAR2, ΔCTM) of OpHsf1 destroyed complementation of the growth defect of the S. cerevisiae hsf1 strain, the C-terminal domains were shown to be dispensable in O. parapolymorpha. Overexpression of OpHsf1 in S. cerevisiae increased resistance to transient heat shock, supporting the idea that OpHsf1 could be useful in the development of heat-shock-resistant yeast host strains.


Subject(s)
Fungal Proteins/genetics , Heat-Shock Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/physiology , Fungal Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Hot Temperature , Protein Domains , Saccharomycetales/chemistry , Thermotolerance , Transcription, Genetic
19.
J Microbiol Biotechnol ; 31(2): 272-279, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33397826

ABSTRACT

Two genes encoding probable α-L-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45°C and pH 7.0 in sodium phosphate buffer and at 50°C and pH 6.0 in sodium acetate buffer, respectively. These exo-acting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only L-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)-and α-(1,3)-L-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)-and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.


Subject(s)
Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Oligosaccharides/metabolism , Saccharomycopsis/enzymology , Catalysis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hydrogen-Ion Concentration , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Oligosaccharides/chemistry , Saccharomycopsis/chemistry , Saccharomycopsis/genetics , Saccharomycopsis/metabolism , Substrate Specificity
20.
Nucleic Acids Res ; 49(2): 745-759, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33367825

ABSTRACT

Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.


Subject(s)
DNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/enzymology , Transcription Factors/genetics , CRISPR-Cas Systems , Cell Respiration , Chromatin Immunoprecipitation , DNA-Binding Proteins/chemistry , Enzyme Activation , Ethanol/metabolism , Glycerol/metabolism , Glycolysis , Protein Binding , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , RNA-Seq , Reverse Transcriptase Polymerase Chain Reaction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Transcription Factors/chemistry , Transcription Factors/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...