Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5026, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596250

ABSTRACT

Mechanically tough and self-healable polymeric materials have found widespread applications in a sustainable future. However, coherent strategies for mechanically tough self-healing polymers are still lacking due to a trade-off relationship between mechanical robustness and viscoelasticity. Here, we disclose a toughening strategy for self-healing elastomers crosslinked by metal-ligand coordination. Emphasis was placed on the effects of counter anions on the dynamic mechanical behaviors of polymer networks. As the coordinating ability of the counter anion increases, the binding of the anion leads to slower dynamics, thus limiting the stretchability and increasing the stiffness. Additionally, multimodal anions that can have diverse coordination modes provide unexpected dynamicity. By simply mixing multimodal and non-coordinating anions, we found a significant synergistic effect on mechanical toughness ( > 3 fold) and self-healing efficiency, which provides new insights into the design of coordination-based tough self-healing polymers.

2.
Nat Nanotechnol ; 18(10): 1175-1184, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322142

ABSTRACT

Stretchable polymer semiconductors (PSCs) are essential for soft stretchable electronics. However, their environmental stability remains a longstanding concern. Here we report a surface-tethered stretchable molecular protecting layer to realize stretchable polymer electronics that are stable in direct contact with physiological fluids, containing water, ions and biofluids. This is achieved through the covalent functionalization of fluoroalkyl chains onto a stretchable PSC film surface to form densely packed nanostructures. The nanostructured fluorinated molecular protection layer (FMPL) improves the PSC operational stability over an extended period of 82 days and maintains its protection under mechanical deformation. We attribute the ability of FMPL to block water absorption and diffusion to its hydrophobicity and high fluorination surface density. The protection effect of the FMPL (~6 nm thickness) outperforms various micrometre-thick stretchable polymer encapsulants, leading to a stable PSC charge carrier mobility of ~1 cm2 V-1 s-1 in harsh environments such as in 85-90%-humidity air for 56 days or in water or artificial sweat for 42 days (as a benchmark, the unprotected PSC mobility degraded to 10-6 cm2 V-1 s-1 in the same period). The FMPL also improved the PSC stability against photo-oxidative degradation in air. Overall, we believe that our surface tethering of the nanostructured FMPL is a promising approach to achieve highly environmentally stable and stretchable polymer electronics.

3.
Nat Commun ; 14(1): 2206, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072411

ABSTRACT

Over the past decade, conductive hydrogels have received great attention as tissue-interfacing electrodes due to their soft and tissue-like mechanical properties. However, a trade-off between robust tissue-like mechanical properties and good electrical properties has prevented the fabrication of a tough, highly conductive hydrogel and limited its use in bioelectronics. Here, we report a synthetic method for the realization of highly conductive and mechanically tough hydrogels with tissue-like modulus. We employed a template-directed assembly method, enabling the arrangement of a disorder-free, highly-conductive nanofibrous conductive network inside a highly stretchable, hydrated network. The resultant hydrogel exhibits ideal electrical and mechanical properties as a tissue-interfacing material. Furthermore, it can provide tough adhesion (800 J/m2) with diverse dynamic wet tissue after chemical activation. This hydrogel enables suture-free and adhesive-free, high-performance hydrogel bioelectronics. We successfully demonstrated ultra-low voltage neuromodulation and high-quality epicardial electrocardiogram (ECG) signal recording based on in vivo animal models. This template-directed assembly method provides a platform for hydrogel interfaces for various bioelectronic applications.


Subject(s)
Adhesives , Hydrogels , Animals , Hydrogels/chemistry , Electric Conductivity , Electrodes
4.
Mater Horiz ; 10(6): 2075-2085, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-36920793

ABSTRACT

Human hands are highly versatile. Even though they are primarily made of materials with high water content, they exhibit a high load capacity. However, existing hydrogel grippers do not possess a high load capacity due to their innate softness and mechanical strength. This work demonstrates a human hand-inspired all-hydrogel gripper that can bear more than 47.6 times its own weight. This gripper is made of two hydrogels: poly(methacrylamide-co-methacrylic acid) (P(MAAm-co-MAAc)) and poly(N-isopropylacrylamide) (PNIPAM). P(MAAm-co-MAAc) is extremely stiff but becomes soft above its transition temperature. By taking advantage of the difference in the kinetics of the stiff-soft transition of P(MAAm-co-MAAc) hydrogels and the swelling-shrinking transition of PNIPAM hydrogels, this gripper can be switched between its stiff-bent and stiff-stretched states by simply changing the temperature. The assembly of these two hydrogels into a gripper necessitated the development of a new hydrogel adhesion method, as existing topological adhesion methods are not applicable to such stiff hydrogels. A new hydrogel adhesion method, termed split-brushing adhesion, has been demonstrated to satisfy this need. When applied to P(MAAm-co-MAAc) hydrogels, this method achieves an adhesion energy of 1221.6 J m-2, which is 67.5 times higher than that achieved with other topological adhesion methods.

5.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36892156

ABSTRACT

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Subject(s)
Wearable Electronic Devices , Humans , Quality of Life
6.
Nat Biomed Eng ; 7(4): 511-519, 2023 04.
Article in English | MEDLINE | ID: mdl-35970931

ABSTRACT

By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.


Subject(s)
Feedback, Sensory , Nanotubes, Carbon , Animals , Mice , Synapses/physiology , Electronics , Motor Neurons
7.
Nat Nanotechnol ; 17(12): 1265-1271, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36357793

ABSTRACT

Semiconducting polymer thin films are essential elements of soft electronics for both wearable and biomedical applications1-11. However, high-mobility semiconducting polymers are usually brittle and can be easily fractured under small strains (<10%)12-14. Recently, the improved intrinsic mechanical properties of semiconducting polymer films have been reported through molecular design15-18 and nanoconfinement19. Here we show that engineering the interfacial properties between a semiconducting thin film and a substrate can notably delay microcrack formation in the film. We present a universal design strategy that involves covalently bonding a dissipative interfacial polymer layer, consisting of dynamic non-covalent crosslinks, between a semiconducting thin film and a substrate. This enables high interfacial toughness between the layers, suppression of delamination and delocalization of strain. As a result, crack initiation and propagation are notably delayed to much higher strains. Specifically, the crack-onset strain of a high-mobility semiconducting polymer thin film improved from 30% to 110% strain without any noticeable microcracks. Despite the presence of a large mismatch in strain between the plastic semiconducting thin film and elastic substrate after unloading, the tough interface layer helped maintain bonding and exceptional cyclic durability and robustness. Furthermore, we found that our interfacial layer reduces the mismatch of thermal expansion coefficients between the different layers. This approach can improve the crack-onset strain of various semiconducting polymers, conducting polymers and even metal thin films.

8.
Science ; 378(6620): 637-641, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36356149

ABSTRACT

An elastic printed circuit board (E-PCB) is a conductive framework used for the facile assembly of system-level stretchable electronics. E-PCBs require elastic conductors that have high conductivity, high stretchability, tough adhesion to various components, and imperceptible resistance changes even under large strain. We present a liquid metal particle network (LMPNet) assembled by applying an acoustic field to a solid-state insulating liquid metal particle composite as the elastic conductor. The LMPNet conductor satisfies all the aforementioned requirements and enables the fabrication of a multilayered high-density E-PCB, in which numerous electronic components are intimately integrated to create highly stretchable skin electronics. Furthermore, we could generate the LMPNet in various polymer matrices, including hydrogels, self-healing elastomers, and photoresists, thus showing their potential for use in soft electronics.

9.
Nat Nanotechnol ; 17(11): 1198-1205, 2022 11.
Article in English | MEDLINE | ID: mdl-36302962

ABSTRACT

Artificial muscles are indispensable components for next-generation robotics capable of mimicking sophisticated movements of living systems. However, an optimal combination of actuation parameters, including strain, stress, energy density and high mechanical strength, is required for their practical applications. Here we report mammalian-skeletal-muscle-inspired single fibres and bundles with large and strong contractive actuation. The use of exfoliated graphene fillers within a uniaxial liquid crystalline matrix enables photothermal actuation with large work capacity and rapid response. Moreover, the reversible percolation of graphene fillers induced by the thermodynamic conformational transition of mesoscale structures can be in situ monitored by electrical switching. Such a dynamic percolation behaviour effectively strengthens the mechanical properties of the actuator fibres, particularly in the contracted actuation state, enabling mammalian-muscle-like reliable reversible actuation. Taking advantage of a mechanically compliant fibre structure, smart actuators are readily integrated into strong bundles as well as high-power soft robotics with light-driven remote control.


Subject(s)
Graphite , Robotics , Animals , Humans , Graphite/chemistry , Mammals
11.
Nature ; 600(7888): 246-252, 2021 12.
Article in English | MEDLINE | ID: mdl-34880427

ABSTRACT

Skin-like intrinsically stretchable soft electronic devices are essential to realize next-generation remote and preventative medicine for advanced personal healthcare1-4. The recent development of intrinsically stretchable conductors and semiconductors has enabled highly mechanically robust and skin-conformable electronic circuits or optoelectronic devices2,5-10. However, their operating frequencies have been limited to less than 100 hertz, which is much lower than that required for many applications. Here we report intrinsically stretchable diodes-based on stretchable organic and nanomaterials-capable of operating at a frequency as high as 13.56 megahertz. This operating frequency is high enough for the wireless operation of soft sensors and electrochromic display pixels using radiofrequency identification in which the base-carrier frequency is 6.78 megahertz or 13.56 megahertz. This was achieved through a combination of rational material design and device engineering. Specifically, we developed a stretchable anode, cathode, semiconductor and current collector that can satisfy the strict requirements for high-frequency operation. Finally, we show the operational feasibility of our diode by integrating it with a stretchable sensor, electrochromic display pixel and antenna to realize a stretchable wireless tag. This work is an important step towards enabling enhanced functionalities and capabilities for skin-like wearable electronics.


Subject(s)
Electrodes , Polymers/chemistry , Wearable Electronic Devices , Electronics/instrumentation , Humans , Nanowires/chemistry , Semiconductors , Silver/chemistry , Skin , Wireless Technology/instrumentation
12.
ACS Cent Sci ; 7(10): 1657-1667, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729409

ABSTRACT

Shape memory polymers are promising materials in many emerging applications due to their large extensibility and excellent shape recovery. However, practical application of these polymers is limited by their poor energy densities (up to ∼1 MJ/m3). Here, we report an approach to achieve a high energy density, one-way shape memory polymer based on the formation of strain-induced supramolecular nanostructures. As polymer chains align during strain, strong directional dynamic bonds form, creating stable supramolecular nanostructures and trapping stretched chains in a highly elongated state. Upon heating, the dynamic bonds break, and stretched chains contract to their initial disordered state. This mechanism stores large amounts of entropic energy (as high as 19.6 MJ/m3 or 17.9 J/g), almost six times higher than the best previously reported shape memory polymers while maintaining near 100% shape recovery and fixity. The reported phenomenon of strain-induced supramolecular structures offers a new approach toward achieving high energy density shape memory polymers.

13.
Nat Commun ; 12(1): 5701, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34588448

ABSTRACT

Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.

14.
Science ; 370(6519): 961-965, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33214277

ABSTRACT

Human skin has different types of tactile receptors that can distinguish various mechanical stimuli from temperature. We present a deformable artificial multimodal ionic receptor that can differentiate thermal and mechanical information without signal interference. Two variables are derived from the analysis of the ion relaxation dynamics: the charge relaxation time as a strain-insensitive intrinsic variable to measure absolute temperature and the normalized capacitance as a temperature-insensitive extrinsic variable to measure strain. The artificial receptor with a simple electrode-electrolyte-electrode structure simultaneously detects temperature and strain by measuring the variables at only two measurement frequencies. The human skin-like multimodal receptor array, called multimodal ion-electronic skin (IEM-skin), provides real-time force directions and strain profiles in various tactile motions (shear, pinch, spread, torsion, and so on).


Subject(s)
Body Temperature , Receptors, Artificial , Skin Physiological Phenomena , Touch , Electric Impedance , Humans , Ion-Selective Electrodes , Shear Strength , Torsion, Mechanical
15.
J Am Chem Soc ; 142(39): 16814-16824, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32901473

ABSTRACT

Polymeric materials in nature regularly employ ordered, hierarchical structures in order to perform unique and precise functions. Importantly, these structures are often formed and stabilized by the cooperative summation of many weak interactions as opposed to the independent association of a few strong bonds. Here, we show that synthetic, flexible polymer chains with periodically placed and directional dynamic bonds collectively assemble into supramolecular nanofibers when the overall molecular weight is below the polymer's critical entanglement molecular weight. This causes bulk films of long polymer chains to have faster dynamics than films of shorter polymer chains of identical chemical composition. The formation of nanofibers increases the bulk film modulus by over an order of magnitude and delays the onset of terminal flow by more than 100 °C, while still remaining solution processable. Systematic investigation of different polymer chain architectures and dynamic bonding moieties along with coarse-grained molecular dynamics simulations illuminate governing structure-function relationships that determine a polymer's capacity to form supramolecular nanofibers. This report of the cooperative assembly of multivalent polymer chains into hierarchical, supramolecular structures contributes to our fundamental understanding of designing biomimetic functional materials.

16.
Nat Biotechnol ; 38(9): 1031-1036, 2020 09.
Article in English | MEDLINE | ID: mdl-32313193

ABSTRACT

Bioelectronics for modulating the nervous system have shown promise in treating neurological diseases1-3. However, their fixed dimensions cannot accommodate rapid tissue growth4,5 and may impair development6. For infants, children and adolescents, once implanted devices are outgrown, additional surgeries are often needed for device replacement, leading to repeated interventions and complications6-8. Here, we address this limitation with morphing electronics, which adapt to in vivo nerve tissue growth with minimal mechanical constraint. We design and fabricate multilayered morphing electronics, consisting of viscoplastic electrodes and a strain sensor that eliminate the stress at the interface between the electronics and growing tissue. The ability of morphing electronics to self-heal during implantation surgery allows a reconfigurable and seamless neural interface. During the fastest growth period in rats, morphing electronics caused minimal damage to the rat nerve, which grows 2.4-fold in diameter, and allowed chronic electrical stimulation and monitoring for 2 months without disruption of functional behavior. Morphing electronics offers a path toward growth-adaptive pediatric electronic medicine.


Subject(s)
Electronics, Medical/instrumentation , Electronics, Medical/methods , Implantable Neurostimulators , Animals , Biocompatible Materials/chemistry , Polymers/chemistry , Rats , Sciatic Nerve/physiology , Viscoelastic Substances/chemistry
17.
Nat Biotechnol ; 38(9): 1097, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32341566

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Adv ; 5(11): eaav3097, 2019 11.
Article in English | MEDLINE | ID: mdl-31723597

ABSTRACT

Skin-like sensory devices should be stretchable and self-healable to meet the demands for future electronic skin applications. Despite recent notable advances in skin-inspired electronic materials, it remains challenging to confer these desired functionalities to an active semiconductor. Here, we report a strain-sensitive, stretchable, and autonomously self-healable semiconducting film achieved through blending of a polymer semiconductor and a self-healable elastomer, both of which are dynamically cross-linked by metal coordination. We observed that by controlling the percolation threshold of the polymer semiconductor, the blend film became strain sensitive, with a gauge factor of 5.75 × 105 at 100% strain in a stretchable transistor. The blend film is also highly stretchable (fracture strain, >1300%) and autonomously self-healable at room temperature. We proceed to demonstrate a fully integrated 5 × 5 stretchable active-matrix transistor sensor array capable of detecting strain distribution through surface deformation.

19.
Adv Mater ; 31(42): e1903912, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31489716

ABSTRACT

Molecular additives are often used to enhance dynamic motion of polymeric chains, which subsequently alter the functional and physical properties of polymers. However, controlling the chain dynamics of semiconducting polymer thin films and understanding the fundamental mechanisms of such changes is a new area of research. Here, cycloparaphenylenes (CPPs) are used as conjugated molecular additives to tune the dynamic behaviors of diketopyrrolopyrrole-based (DPP-based) semiconducting polymers. It is observed that the addition of CPPs results in significant improvement in the stretchability of the DPP-based polymers without adversely affecting their mobility, which arises from the enhanced polymer dynamic motion and reduced long-range crystalline order. The polymer films retain their fiber-like morphology and short-range ordered aggregates, which leads to high mobility. Fully stretchable transistors are subsequently fabricated using CPP/semiconductor composites as active layers. These composites are observed to maintain high mobilities when strained and after repeated applied strains. Interestingly, CPPs are also observed to improve the contact resistance and charge transport of the fully stretchable transistors. ln summary, these results collectively indicate that controlling the dynamic motion of polymer semiconductors is proved to be an effective way to improve their stretchability.

20.
ACS Nano ; 13(6): 6531-6539, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31072094

ABSTRACT

Both self-healable conductors and stretchable conductors have been previously reported. However, it is still difficult to simultaneously achieve high stretchability, high conductivity, and self-healability. Here, we observed an intriguing phenomenon, termed "electrical self-boosting", which enables reconstructing of electrically percolative pathways in an ultrastretchable and self-healable nanocomposite conductor (over 1700% strain). The autonomously reconstructed percolative pathways were directly verified by using microcomputed tomography and in situ scanning electron microscopy. The encapsulated nanocomposite conductor shows exceptional conductivity (average value: 2578 S cm-1; highest value: 3086 S cm-1) at 3500% tensile strain by virtue of efficient strain energy dissipation of the self-healing polymer and self-alignment and rearrangement of silver flakes surrounded by spontaneously formed silver nanoparticles and their self-assembly in the strained self-healing polymer matrix. In addition, the conductor maintains high conductivity and stretchability even after recovered from a complete cut. Besides, a design of double-layered conductor enabled by the self-bonding assembly allowed a conducting interface to be located on the neutral mechanical plane, showing extremely durable operations in a cyclic stretching test. Finally, we successfully demonstrated that electromyogram signals can be monitored by our self-healable interconnects. Such information was transmitted to a prosthetic robot to control various hand motions for robust interactive human-robot interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...