Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 658: 846-855, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157609

ABSTRACT

Bimetallic phosphides exhibit superior electrocatalytic activities and synergistic effects that make them ideal electrocatalysts for the urea oxidation reaction (UOR). Herein, P, N-codoped carbon-encapsulated cobalt/nickel phosphides derived from NiCo-MOF-74 (NiCoP@PNC) and anchored on P-doped carbonized wood fiber (PCWF) for UOR were prepared through synchronous carbonization and phosphorization. By benefiting from the synergistic effect of structural and electronic modulation, NiCoP@PNC/PCWF exhibits excellent UOR electrocatalytic performance under alkaline conditions, achieving a current density of 50 mA cm-2 with a potential of only 1.34 V (vs reversible hydrogen electrode, RHE) and continuous operation for more than 72 h. In addition, for the overall urea splitting, an electrolyzer using UOR replaced OER, which required only 1.50 V to achieve a current density of 50 mA cm-2 with excellent stability, 230 mV less than that required for the HER||OER system. In-depth theoretical analysis further proves that the strong synergistic effect between Co and Ni optimizes electronic structures, yielding excellent UOR properties. The synergistic strategy of structural and electrical modulation provides broad prospects for the design and synthesis of excellent UOR electrocatalysts for energy-saving hydrogen production by using renewable resources.

2.
Small ; 18(24): e2200950, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35561052

ABSTRACT

Electronic structure optimization and architecture modulation are widely regarded as rational strategies to enhance the electrocatalysts catalytic performance. Herein, a hybridization of ZIF-67-derived CoP nanoparticles embedded in P, N co-doped carbon matrix (PNC) and anchored on P-doped carbonized wood fibers (PCWF) is constructed using a simple simultaneous phosphorization and carbonization strategy. Benefiting from the optimized surface/interface electronic structures, abundant exposed active sites, and outstanding conductivity, the CoP@PNC/PCWF can drive the urea oxidation reaction (UOR) with greater activity and better stability than most recently reported electrocatalysts, in which a potential as low as 1.32 V (vs reversible hydrogen electrode, RHE) is needed to reach 50 mA cm-2 and shows excellent durability. Furthermore, for overall urea splitting, using the CoP@PNC/PCWF electrocatalyst as the anode and commercial Pt/C supported on nickel foam as the cathode, an ultralow cell voltage of 1.50 V (vs RHE) is expected to achieve the 50 mA cm-2 and operate continuously for more than 50 h at 20 mA cm-2 . The reported strategy may shed light on the use of renewable resources to design and synthesize high-performance non-Ni-based phosphides UOR electrocatalysts for energy-saving H2 production.

SELECTION OF CITATIONS
SEARCH DETAIL
...