Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Epigenetics Chromatin ; 17(1): 22, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033118

ABSTRACT

Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains only partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of changes in chromatin modifications during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-h old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.


Subject(s)
Animal Fins , Histones , Regeneration , Zebrafish , Animals , Histones/metabolism , Histones/genetics , Animal Fins/metabolism , Animal Fins/physiology , Chromatin/metabolism
2.
Res Sq ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38645155

ABSTRACT

Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of epigenetic changes during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these epigenetic reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-hour old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.

3.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38352555

ABSTRACT

Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. While Interleukin11 (IL11) is known as a fibrotic factor, its contribution to heart regeneration is poorly understood. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. However, prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.

4.
Dev Biol ; 505: 24-33, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37839785

ABSTRACT

Knock-in reporter (KI) animals are essential tools in biomedical research to study gene expression impacting diverse biological events. While CRISPR/Cas9-mediated genome editing allows for the successful generation of KI animals, several factors should be considered, such as low expression of the target gene, prevention of bacterial DNA integration, and in-frame editing. To circumvent these challenges, we developed a new strategy that utilizes minicircle technology and introduces a minimal promoter. We demonstrated that minicircles serve as an efficient donor DNA in zebrafish, significantly enhancing KI events compared to plasmids containing bacterial backbones. In an attempt to generate a KI reporter for scn8ab, we precisely integrated a fluorescence gene at the start codon. However, the seamlessly integrated reporter was unable to direct expression that recapitulates endogenous scn8ab expression. To overcome this obstacle, we introduced the hsp70 minimal promoter to provide an ectopic transcription initiation site and succeeded in establishing stable KI transgenic reporters for scn8ab. This strategy also created a fgf20b KI reporter line with a high success rate. Furthermore, our data revealed that an unexpectedly edited genome can inappropriately influence the integrated reporter gene expression, highlighting the importance of selecting a proper KI line. Overall, our approach utilizing a minicircle and an ectopic promoter establishes a robust and efficient strategy for KI generation, expanding our capacity to create KI animals.


Subject(s)
CRISPR-Cas Systems , Zebrafish , Animals , CRISPR-Cas Systems/genetics , Zebrafish/genetics , Gene Knock-In Techniques , Animals, Genetically Modified , Gene Editing
5.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745465

ABSTRACT

Knock-in reporter (KI) animals are essential tools in biomedical research to study gene expression impacting diverse biological events. While CRISPR/Cas9-mediated genome editing allows for the successful generation of KI animals, several factors should be considered, such as low expression of the target gene, prevention of bacterial DNA integration, and in-frame editing. To circumvent these challenges, we developed a new strategy that utilizes minicircle technology and introduces a minimal promoter. We demonstrated that minicircles serve as an efficient donor DNA in zebrafish, significantly enhancing KI events compared to plasmids containing bacterial backbones. In an attempt to generate a KI reporter for scn8ab, we precisely integrated a fluorescence gene at the start codon. However, the seamlessly integrated reporter was unable to direct expression that recapitulates endogenous scn8ab expression. To overcome this obstacle, we introduced the hsp70 minimal promoter to provide an ectopic transcription initiation site and succeeded in establishing stable KI transgenic reporters for scn8ab. This strategy also created a fgf20b KI reporter line with a high success rate. Furthermore, our data revealed that an unexpectedly edited genome can inappropriately influence the integrated reporter gene expression, highlighting the importance of selecting a proper KI line. Overall, our approach utilizing a minicircle and an ectopic promoter establishes a robust and efficient strategy for KI generation, expanding our capacity to create KI animals.

6.
Development ; 150(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37306388

ABSTRACT

The eIF4E family of translation initiation factors bind 5' methylated caps and act as the limiting step for mRNA translation. The canonical eIF4E1A is required for cell viability, yet other related eIF4E families exist and are utilized in specific contexts or tissues. Here, we describe a family called Eif4e1c, for which we find roles during heart development and regeneration in zebrafish. The Eif4e1c family is present in all aquatic vertebrates but is lost in all terrestrial species. A core group of amino acids shared over 500 million years of evolution forms an interface along the protein surface, suggesting that Eif4e1c functions in a novel pathway. Deletion of eif4e1c in zebrafish caused growth deficits and impaired survival in juveniles. Mutants surviving to adulthood had fewer cardiomyocytes and reduced proliferative responses to cardiac injury. Ribosome profiling of mutant hearts demonstrated changes in translation efficiency of mRNA for genes known to regulate cardiomyocyte proliferation. Although eif4e1c is broadly expressed, its disruption had most notable impact on the heart and at juvenile stages. Our findings reveal context-dependent requirements for translation initiation regulators during heart regeneration.


Subject(s)
Heart Injuries , Myocytes, Cardiac , Animals , Zebrafish/genetics , Eukaryotic Initiation Factor-4E/genetics , Cell Proliferation/genetics
7.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36516837

ABSTRACT

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Subject(s)
Enhancer Elements, Genetic , Genetic Therapy , Heart , Myocardial Infarction , Myocytes, Cardiac , Regeneration , Animals , Mice , Cell Proliferation , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Zebrafish/genetics , Genetic Therapy/methods , Regeneration/genetics
8.
Dev Dyn ; 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36495292

ABSTRACT

BACKGROUND: Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of various genes upon injury. Injury-dependent transcription is governed by the tissue regeneration enhancer elements (TREEs). Here, we utilized leptin b (lepb), an injury-specific factor, and its TREE to dissect heterogeneity of noncardiomyocytes (CMs) in regenerating hearts. RESULTS: Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset injury-activated ECs. lepb+ ECs robustly induce pro-regenerative factors, implicating lepb+ ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis identified that lepb is also produced by subpopulation of epicardium (Epi) and epicardium-derived cells (EPDCs). To determine whether lepb labels injury-emerging non-CM cells, we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility profiles and transgenic lines. While nondetectable in uninjured hearts, LEN directs EC and Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of lepb, but not other nearby genes. CONCLUSIONS: Our integrative analyses identify regeneration-emerging cell-types and factors, leading to the discovery of regenerative features of hearts.

9.
Dev Biol ; 492: 47-58, 2022 12.
Article in English | MEDLINE | ID: mdl-36167150

ABSTRACT

Enhancers and promoters are cis-regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb (P0.8) and lepb 2-kb (P2) promoters, and a new zebrafish synthetic promoter (ZSP) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.


Subject(s)
Enhancer Elements, Genetic , Zebrafish , Animals , Enhancer Elements, Genetic/genetics , Zebrafish/genetics , Promoter Regions, Genetic/genetics , Animals, Genetically Modified , Drosophila/genetics
10.
Proc Natl Acad Sci U S A ; 119(28): e2200342119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867745

ABSTRACT

Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.


Subject(s)
Animal Fins , NAV1.6 Voltage-Gated Sodium Channel , Regeneration , Zebrafish Proteins , Zebrafish , Animal Fins/innervation , Animal Fins/physiology , Animals , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/physiology , Regeneration/genetics , Regeneration/physiology , Zebrafish/genetics , Zebrafish/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/physiology
11.
J Cell Biochem ; 123(9): 1411-1421, 2022 09.
Article in English | MEDLINE | ID: mdl-35734917

ABSTRACT

Acromegaly is a growth hormone (GH) excess pathological condition in humans. Acromegaly is associated with somatic disfigurement and a wide range of systemic manifestations such as arthritis, neuropathy, carpal tunnel syndrome, reproductive disorders, metabolic disorders, and gastrointestinal complications. The influence of excess GH on the cellular level could aid in understanding the root causes of acromegaly-related health complications. Previously, we found that GH excess induces DNA damage to somatic cells and reduces the stem cells number and causes premature aging. In this study, an in-depth analysis of the acromegaly RNAseq data revealed the disruption of important biological cellular processes. Gene set enrichment analysis, heatmap, and enrichment analysis of acromegaly RNAseq data revealed induction of endoplasmic reticulum (ER) stress markers in various organs. Interestingly, the induction of ER stress was even more apparent than in aged zebrafish. Splicing of box-binding protein-1 (XBP1) mRNA is a hallmark of ER stress. Therefore, we quantified spliced XBP1 mRNA in different organs of our acromegaly model. Thus, our study emphasizes the importance of ER stress in GH oversecretion, which is important for understanding the health complications of acromegaly.


Subject(s)
Acromegaly , Endoplasmic Reticulum Stress , Acromegaly/genetics , Aged , Animals , Biomarkers , Endoplasmic Reticulum Stress/genetics , Growth Hormone , Humans , RNA, Messenger/genetics , X-Box Binding Protein 1/genetics , Zebrafish/genetics
13.
Adv Healthc Mater ; 10(18): e2100581, 2021 09.
Article in English | MEDLINE | ID: mdl-34363335

ABSTRACT

3D cell printing technology is in the spotlight for producing 3D tissue or organ constructs useful for various medical applications. In printing of neuromuscular tissue, a bioink satisfying all the requirements is a challenging issue. Gel integrity and motor neuron activity are two major characters because a harmonious combination of extracellular materials essential to motor neuron activity consists of disadvantages in mechanical properties. Here, a method for fabrication of 3D neuromuscular tissue is presented using a porcine central nervous system tissue decellularized extracellular matrix (CNSdECM) bioink. CNSdECM retains CNS tissue-specific extracellular molecules, provides rheological properties crucial for extrusion-based 3D cell printing, and reveals positive effects on the growth and maturity of axons of motor neurons compared with Matrigel. It also allows long-term cultivation of human-induced-pluripotent-stem-cell-derived lower motor neurons and sufficiently supports their cellular behavior to carry motor signals to muscle fibers. CNSdECM bioink holds great promise for producing a tissue-engineered motor system using 3D cell printing.


Subject(s)
Bioprinting , Animals , Humans , Motor Neurons , Neuromuscular Junction , Printing, Three-Dimensional , Swine , Tissue Engineering , Tissue Scaffolds
14.
Sci Rep ; 11(1): 6983, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772091

ABSTRACT

We investigated the dynamics of the bacterial composition and metabolic function within Akashiwo sanguinea bloom using a 100-L indoor microcosm and metagenomic next-generation sequencing. We found that the bacterial community was classified into three groups at 54% similarity. Group I was associated with "during the A. sanguinea bloom stage" and mainly consisted of Alphaproteobacteria, Flavobacteriia and Gammaproteobacteria. Meanwhile, groups II and III were associated with the "late bloom/decline stage to post-bloom stage" with decreased Flavobacteriia and Gammaproteobacteria in these stages. Upon the termination of the A. sanguinea bloom, the concentrations of inorganic nutrients (particularly PO43-, NH4+ and dissolved organic carbon) increased rapidly and then decreased. From the network analysis, we found that the A. sanguinea node is associated with certain bacteria. After the bloom, the specific increases in NH4+ and PO43- nodes are associated with other bacterial taxa. The changes in the functional groups of the bacterial community from chemoheterotrophy to nitrogen association metabolisms were consistent with the environmental impacts during and after A. sanguinea bloom. Consequently, certain bacterial communities and the environments dynamically changed during and after harmful algal blooms and a rapid turnover within the bacterial community and their function can respond to ecological interactions.


Subject(s)
Alphaproteobacteria/isolation & purification , Dinoflagellida/growth & development , Flavobacteriaceae/isolation & purification , Gammaproteobacteria/isolation & purification , Harmful Algal Bloom , Metagenome , Seawater/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/growth & development , Carbon/analysis , Dinoflagellida/microbiology , Flavobacteriaceae/genetics , Flavobacteriaceae/growth & development , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , High-Throughput Nucleotide Sequencing , Nitrogen/analysis , Phosphorus/analysis
15.
J Mol Cell Biol ; 13(1): 41-58, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33582796

ABSTRACT

Heart regeneration occurs by dedifferentiation and proliferation of pre-existing cardiomyocytes (CMs). However, the signaling mechanisms by which injury induces CM renewal remain incompletely understood. Here, we find that cardiac injury in zebrafish induces expression of the secreted Wnt inhibitors, including Dickkopf 1 (Dkk1), Dkk3, secreted Frizzled-related protein 1 (sFrp1), and sFrp2, in cardiac tissue adjacent to injury sites. Experimental blocking of Wnt activity via Dkk1 overexpression enhances CM proliferation and heart regeneration, whereas ectopic activation of Wnt8 signaling blunts injury-induced CM dedifferentiation and proliferation. Although Wnt signaling is dampened upon injury, the cytoplasmic ß-catenin is unexpectedly increased at disarrayed CM sarcomeres in myocardial wound edges. Our analyses indicated that p21-activated kinase 2 (Pak2) is induced at regenerating CMs, where it phosphorylates cytoplasmic ß-catenin at Ser 675 and increases its stability at disassembled sarcomeres. Myocardial-specific induction of the phospho-mimetic ß-catenin (S675E) enhances CM dedifferentiation and sarcomere disassembly in response to injury. Conversely, inactivation of Pak2 kinase activity reduces the Ser 675-phosphorylated ß-catenin (pS675-ß-catenin) and attenuates CM sarcomere disorganization and dedifferentiation. Taken together, these findings demonstrate that coordination of Wnt signaling inhibition and Pak2/pS675-ß-catenin signaling enhances zebrafish heart regeneration by supporting CM dedifferentiation and proliferation.


Subject(s)
Heart Injuries/pathology , Myocytes, Cardiac/pathology , Regeneration/physiology , Wnt Signaling Pathway/physiology , Animals , Cell Proliferation , Disease Models, Animal , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Sarcomeres/pathology , Zebrafish , Zebrafish Proteins/metabolism , beta Catenin/metabolism
16.
Mol Ecol ; 30(1): 207-221, 2021 01.
Article in English | MEDLINE | ID: mdl-33113287

ABSTRACT

Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguinea-Amoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguinea-Ectocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host-specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.


Subject(s)
Dinoflagellida , Microbiota , Dinoflagellida/genetics , Harmful Algal Bloom , Microbiota/genetics , Phytoplankton/genetics , Republic of Korea
17.
Development ; 147(24)2020 12 23.
Article in English | MEDLINE | ID: mdl-33246928

ABSTRACT

Heart regeneration in regeneration-competent organisms can be accomplished through the remodeling of gene expression in response to cardiac injury. This dynamic transcriptional response relies on the activities of tissue regeneration enhancer elements (TREEs); however, the mechanisms underlying TREEs are poorly understood. We dissected a cardiac regeneration enhancer in zebrafish to elucidate the mechanisms governing spatiotemporal gene expression during heart regeneration. Cardiac lepb regeneration enhancer (cLEN) exhibits dynamic, regeneration-dependent activity in the heart. We found that multiple injury-activated regulatory elements are distributed throughout the enhancer region. This analysis also revealed that cardiac regeneration enhancers are not only activated by injury, but surprisingly, they are also actively repressed in the absence of injury. Our data identified a short (22 bp) DNA element containing a key repressive element. Comparative analysis across Danio species indicated that the repressive element is conserved in closely related species. The repression mechanism is not operational during embryogenesis and emerges when the heart begins to mature. Incorporating both activation and repression components into the mechanism of tissue regeneration constitutes a new paradigm that might be extrapolated to other regeneration scenarios.


Subject(s)
Enhancer Elements, Genetic , Heart Injuries/genetics , Heart/growth & development , Regeneration/genetics , Animals , Gene Expression Regulation , Gene Expression Regulation, Developmental/genetics , Heart Injuries/pathology , Heart Injuries/rehabilitation , Humans , Organogenesis/genetics , Regeneration/physiology , Wound Healing/genetics , Wound Healing/physiology , Zebrafish/genetics , Zebrafish/growth & development
18.
Development ; 147(14)2020 07 30.
Article in English | MEDLINE | ID: mdl-32665240

ABSTRACT

To identify candidate tissue regeneration enhancer elements (TREEs) important for zebrafish fin regeneration, we performed ATAC-seq from bulk tissue or purified fibroblasts of uninjured and regenerating caudal fins. We identified tens of thousands of DNA regions from each sample type with dynamic accessibility during regeneration, and assigned these regions to proximal genes with corresponding expression changes by RNA-seq. To determine whether these profiles reveal bona fide TREEs, we tested the sufficiency and requirements of several sequences in stable transgenic lines and mutant lines with homozygous deletions. These experiments validated new non-coding regulatory sequences near induced and/or essential genes during fin regeneration, including fgf20a, mdka and cx43, identifying distinct domains of directed expression for each confirmed TREE. Whereas deletion of the previously identified LEN enhancer abolished detectable induction of the nearby leptin b gene during regeneration, deletions of enhancers linked to fgf20a, mdka and cx43 had no effect or partially reduced gene expression. Our study generates a new resource for dissecting the regulatory mechanisms of appendage generation and reveals a range of requirements for individual TREEs in control of regeneration programs.


Subject(s)
Animal Fins/metabolism , Enhancer Elements, Genetic/genetics , Regeneration/physiology , Zebrafish/metabolism , Animal Fins/physiology , Animals , Animals, Genetically Modified/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Connexin 43/genetics , Connexin 43/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Leptin/genetics , Leptin/metabolism , Midkine/genetics , Midkine/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
19.
J Cell Biol ; 219(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32328635

ABSTRACT

Calcium is an important early signal in wound healing, yet how these early signals promote regeneration remains unclear. Peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes, catalyze citrullination, a post-translational modification that alters protein function and has been implicated in autoimmune diseases. We generated a mutation in the single zebrafish ancestral pad gene, padi2, that results in a loss of detectable calcium-dependent citrullination. The mutants exhibit impaired resolution of inflammation and regeneration after caudal fin transection. We identified a new subpopulation of cells displaying citrullinated histones within the notochord bead following tissue injury. Citrullination of histones in this region was absent, and wound-induced proliferation was perturbed in Padi2-deficient larvae. Taken together, our results show that Padi2 is required for the citrullination of histones within a group of cells in the notochord bead and for promoting wound-induced proliferation required for efficient regeneration. These findings identify Padi2 as a potential intermediary between early calcium signaling and subsequent tissue regeneration.


Subject(s)
Citrullination , Protein-Arginine Deiminase Type 2/metabolism , Regeneration , Wound Healing , Zebrafish/physiology , Amino Acid Sequence , Animals , Calcium/metabolism , Histones/metabolism , Humans , Larva/growth & development , Protein-Arginine Deiminase Type 2/deficiency , Protein-Arginine Deiminase Type 2/genetics , Sequence Alignment
20.
Semin Cell Dev Biol ; 97: 47-54, 2020 01.
Article in English | MEDLINE | ID: mdl-30953740

ABSTRACT

Regeneration, an ability to replace lost body parts, is widespread across animal species. While mammals poorly regenerate most tissues, teleost fish and urodele amphibians possess remarkable regenerative capacity. Earlier work demonstrated that genes driving regeneration are evolutionarily conserved, indicating that a key factor in diverse tissue regeneration is not the presence or absence of regeneration-driving genes but the mechanisms controlling activation of these genes after injury. Thus, understanding the regulatory events of tissue regeneration could provide the means for unlocking latent capacities for tissue regeneration. After injury, cells undergo extensive epigenetic changes to establish new transcriptional programs for tissue regeneration. Gene transcription in eukaryotes is a complicated process that requires specific interactions between trans-acting regulators and cis-regulatory DNA elements. Among cis-regulatory elements, enhancers are essential to control precise gene expression. Recently, multiple regeneration/injury-associated enhancers have been identified in several model organisms. In this review, we highlight recently discovered regeneration/injury enhancers and their specific characteristics. We also discuss how abnormal regulation of regeneration enhancers influences animal development and physiology. Investigation of regeneration enhancers potentially allows us to begin understanding the fundamental biology of tissue regeneration and inspires new solutions for manipulating regenerative ability.


Subject(s)
Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/genetics , Regeneration/genetics , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL